1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{DivRound, DivRoundAssign, UnsignedAbs};
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::{ExactFrom, WrappingFrom};
use crate::rounding_modes::RoundingMode::{self, *};
use core::cmp::Ordering::{self, *};
fn div_round_unsigned<T: PrimitiveUnsigned>(x: T, other: T, rm: RoundingMode) -> (T, Ordering) {
let quotient = x / other;
let remainder = x - quotient * other;
match rm {
_ if remainder == T::ZERO => (quotient, Equal),
Down | Floor => (quotient, Less),
Up | Ceiling => (quotient + T::ONE, Greater),
Nearest => {
let shifted_other = other >> 1;
if remainder > shifted_other
|| remainder == shifted_other && other.even() && quotient.odd()
{
(quotient + T::ONE, Greater)
} else {
(quotient, Less)
}
}
Exact => {
panic!("Division is not exact: {x} / {other}");
}
}
}
macro_rules! impl_div_round_unsigned {
($t:ident) => {
impl DivRound<$t> for $t {
type Output = $t;
/// Divides a value by another value and rounds according to a specified rounding mode.
/// An [`Ordering`] is also returned, indicating whether the returned value is less
/// than, equal to, or greater than the exact value.
///
/// Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first
/// element of the pair, without the [`Ordering`]:
///
/// $$
/// g(x, y, \mathrm{Down}) = g(x, y, \mathrm{Floor}) = \lfloor q \rfloor.
/// $$
///
/// $$
/// g(x, y, \mathrm{Up}) = g(x, y, \mathrm{Ceiling}) = \lceil q \rceil.
/// $$
///
/// $$
/// g(x, y, \mathrm{Nearest}) = \begin{cases}
/// \lfloor q \rfloor & \text{if} \\quad q - \lfloor q \rfloor < \frac{1}{2}, \\\\
/// \lceil q \rceil & \text{if} \\quad q - \lfloor q \rfloor > \frac{1}{2}, \\\\
/// \lfloor q \rfloor &
/// \text{if} \\quad q - \lfloor q \rfloor = \frac{1}{2}
/// \\ \text{and} \\ \lfloor q \rfloor \\ \text{is even}, \\\\
/// \lceil q \rceil &
/// \text{if} \\quad q - \lfloor q \rfloor = \frac{1}{2}
/// \\ \text{and} \\ \lfloor q \rfloor \\ \text{is odd.}
/// \end{cases}
/// $$
///
/// $g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \N$.
///
/// Then
///
/// $f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `other` is zero, or if `rm` is `Exact` but `self` is not divisible by
/// `other`.
///
/// # Examples
/// See [here](super::div_round#div_round).
#[inline]
fn div_round(self, other: $t, rm: RoundingMode) -> ($t, Ordering) {
div_round_unsigned(self, other, rm)
}
}
impl DivRoundAssign<$t> for $t {
/// Divides a value by another value in place and rounds according to a specified
/// rounding mode. An [`Ordering`] is returned, indicating whether the assigned value is
/// less than, equal to, or greater than the exact value.
///
/// See the [`DivRound`] documentation for details.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `other` is zero, or if `rm` is `Exact` but `self` is not divisible by
/// `other`.
///
/// # Examples
/// See [here](super::div_round#div_round_assign).
#[inline]
fn div_round_assign(&mut self, other: $t, rm: RoundingMode) -> Ordering {
let o;
(*self, o) = self.div_round(other, rm);
o
}
}
};
}
apply_to_unsigneds!(impl_div_round_unsigned);
fn div_round_signed<
U: PrimitiveUnsigned,
S: ExactFrom<U> + PrimitiveSigned + UnsignedAbs<Output = U> + WrappingFrom<U>,
>(
x: S,
other: S,
rm: RoundingMode,
) -> (S, Ordering) {
if (x >= S::ZERO) == (other >= S::ZERO) {
let (q, o) = x.unsigned_abs().div_round(other.unsigned_abs(), rm);
(S::exact_from(q), o)
} else {
// Has to be wrapping so that (self, other) == (T::MIN, 1) works
let (q, o) = x.unsigned_abs().div_round(other.unsigned_abs(), -rm);
(S::wrapping_from(q).wrapping_neg(), o.reverse())
}
}
macro_rules! impl_div_round_signed {
($t:ident) => {
impl DivRound<$t> for $t {
type Output = $t;
/// Divides a value by another value and rounds according to a specified rounding mode.
/// An [`Ordering`] is also returned, indicating whether the returned value is less
/// than, equal to, or greater than the exact value.
///
/// Let $q = \frac{x}{y}$, and let $g$ be the function that just returns the first
/// element of the pair, without the [`Ordering`]:
///
/// $$
/// g(x, y, \mathrm{Down}) = \operatorname{sgn}(q) \lfloor |q| \rfloor.
/// $$
///
/// $$
/// g(x, y, \mathrm{Up}) = \operatorname{sgn}(q) \lceil |q| \rceil.
/// $$
///
/// $$
/// g(x, y, \mathrm{Floor}) = \lfloor q \rfloor.
/// $$
///
/// $$
/// g(x, y, \mathrm{Ceiling}) = \lceil q \rceil.
/// $$
///
/// $$
/// g(x, y, \mathrm{Nearest}) = \begin{cases}
/// \lfloor q \rfloor & \text{if} \\quad q - \lfloor q \rfloor < \frac{1}{2}, \\\\
/// \lceil q \rceil & q - \lfloor q \rfloor > \frac{1}{2}, \\\\
/// \lfloor q \rfloor &
/// \text{if} \\quad q - \lfloor q \rfloor = \frac{1}{2} \\ \text{and}
/// \\ \lfloor q \rfloor \\ \text{is even}, \\\\
/// \lceil q \rceil &
/// \text{if} \\quad q - \lfloor q \rfloor = \frac{1}{2} \\ \text{and}
/// \\ \lfloor q \rfloor \\ \text{is odd.}
/// \end{cases}
/// $$
///
/// $g(x, y, \mathrm{Exact}) = q$, but panics if $q \notin \Z$.
///
/// Then
///
/// $f(x, y, r) = (g(x, y, r), \operatorname{cmp}(g(x, y, r), q))$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `other` is zero, if `self` is `Self::MIN` and `other` is `-1`, or if `rm`
/// is `Exact` but `self` is not divisible by `other`.
///
/// # Examples
/// See [here](super::div_round#div_round).
fn div_round(self, other: $t, rm: RoundingMode) -> ($t, Ordering) {
div_round_signed(self, other, rm)
}
}
impl DivRoundAssign<$t> for $t {
/// Divides a value by another value in place and rounds according to a specified
/// rounding mode. An [`Ordering`] is returned, indicating whether the assigned value is
/// less than, equal to, or greater than the exact value.
///
/// See the [`DivRound`] documentation for details.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `other` is zero, if `self` is `Self::MIN` and `other` is `-1`, or if `rm`
/// is `Exact` but `self` is not divisible by `other`.
///
/// # Examples
/// See [here](super::div_round#div_round_assign).
#[inline]
fn div_round_assign(&mut self, other: $t, rm: RoundingMode) -> Ordering {
let o;
(*self, o) = self.div_round(other, rm);
o
}
}
};
}
apply_to_signeds!(impl_div_round_signed);