1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{DivisibleByPowerOf2, ModPowerOf2};
use crate::num::conversion::traits::WrappingFrom;
macro_rules! impl_divisible_by_power_of_2_unsigned {
($t:ident) => {
impl DivisibleByPowerOf2 for $t {
/// Returns whether a number is divisible by $2^k$.
///
/// $f(x, k) = (2^k|x)$.
///
/// $f(x, k) = (\exists n \in \N : \ x = n2^k)$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::divisible_by_power_of_2#divisible_by_power_of_2).
#[inline]
fn divisible_by_power_of_2(self, pow: u64) -> bool {
self.mod_power_of_2(pow) == 0
}
}
};
}
apply_to_unsigneds!(impl_divisible_by_power_of_2_unsigned);
macro_rules! impl_divisible_by_power_of_2_signed {
($u:ident, $s:ident) => {
impl DivisibleByPowerOf2 for $s {
/// Returns whether a number is divisible by $2^k$.
///
/// $f(x, k) = (2^k|x)$.
///
/// $f(x, k) = (\exists n \in \N : x = n2^k)$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::divisible_by_power_of_2#divisible_by_power_of_2).
#[inline]
fn divisible_by_power_of_2(self, pow: u64) -> bool {
$u::wrapping_from(self).divisible_by_power_of_2(pow)
}
}
};
}
apply_to_unsigned_signed_pairs!(impl_divisible_by_power_of_2_signed);