1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the FLINT Library.
//
// Copyright © 2009, 2016 William Hart
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::ExtendedGcd;
use crate::num::arithmetic::traits::UnsignedAbs;
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::WrappingFrom;
use crate::rounding_modes::RoundingMode::*;
use core::mem::swap;
fn extended_gcd_signed<
U: ExtendedGcd<Cofactor = S> + PrimitiveUnsigned,
S: PrimitiveSigned + UnsignedAbs<Output = U> + WrappingFrom<U>,
>(
a: S,
b: S,
) -> (U, S, S) {
let (gcd, mut x, mut y) = a.unsigned_abs().extended_gcd(b.unsigned_abs());
if a < S::ZERO {
x = x.checked_neg().unwrap();
}
if b < S::ZERO {
y = y.checked_neg().unwrap();
}
(gcd, x, y)
}
// This is equivalent to `n_xgcd` from `ulong_extras/xgcd.c`, FLINT 2.7.1, with an adjustment to
// find the minimal cofactors.
pub_test! {extended_gcd_unsigned_binary<
U: WrappingFrom<S> + PrimitiveUnsigned,
S: PrimitiveSigned + WrappingFrom<U>,
>(
mut a: U,
mut b: U,
) -> (U, S, S) {
if a == U::ZERO && b == U::ZERO {
return (U::ZERO, S::ZERO, S::ZERO);
} else if a == b || a == U::ZERO {
return (b, S::ZERO, S::ONE);
} else if b == U::ZERO {
return (a, S::ONE, S::ZERO);
}
let mut swapped = false;
if a < b {
swap(&mut a, &mut b);
swapped = true;
}
let mut u1 = S::ONE;
let mut v2 = S::ONE;
let mut u2 = S::ZERO;
let mut v1 = S::ZERO;
let mut u3 = a;
let mut v3 = b;
let mut d;
let mut t2;
let mut t1;
if (a & b).get_highest_bit() {
d = u3 - v3;
t2 = v2;
t1 = u2;
u2 = u1 - u2;
u1 = t1;
u3 = v3;
v2 = v1 - v2;
v1 = t2;
v3 = d;
}
while v3.get_bit(U::WIDTH - 2) {
d = u3 - v3;
if d < v3 {
// quot = 1
t2 = v2;
t1 = u2;
u2 = u1 - u2;
u1 = t1;
u3 = v3;
v2 = v1 - v2;
v1 = t2;
v3 = d;
} else if d < (v3 << 1) {
// quot = 2
t1 = u2;
u2 = u1 - (u2 << 1);
u1 = t1;
u3 = v3;
t2 = v2;
v2 = v1 - (v2 << 1);
v1 = t2;
v3 = d - u3;
} else {
// quot = 3
t1 = u2;
u2 = u1 - S::wrapping_from(3) * u2;
u1 = t1;
u3 = v3;
t2 = v2;
v2 = v1 - S::wrapping_from(3) * v2;
v1 = t2;
v3 = d - (u3 << 1);
}
}
while v3 != U::ZERO {
d = u3 - v3;
// overflow not possible, top 2 bits of v3 not set
if u3 < (v3 << 2) {
if d < v3 {
// quot = 1
t2 = v2;
t1 = u2;
u2 = u1 - u2;
u1 = t1;
u3 = v3;
v2 = v1 - v2;
v1 = t2;
v3 = d;
} else if d < (v3 << 1) {
// quot = 2
t1 = u2;
u2 = u1.wrapping_sub(u2 << 1);
u1 = t1;
u3 = v3;
t2 = v2;
v2 = v1.wrapping_sub(v2 << 1);
v1 = t2;
v3 = d - u3;
} else {
// quot = 3
t1 = u2;
u2 = u1.wrapping_sub(S::wrapping_from(3).wrapping_mul(u2));
u1 = t1;
u3 = v3;
t2 = v2;
v2 = v1.wrapping_sub(S::wrapping_from(3).wrapping_mul(v2));
v1 = t2;
v3 = d.wrapping_sub(u3 << 1);
}
} else {
let (quot, rem) = u3.div_rem(v3);
t1 = u2;
u2 = u1.wrapping_sub(S::wrapping_from(quot).wrapping_mul(u2));
u1 = t1;
u3 = v3;
t2 = v2;
v2 = v1.wrapping_sub(S::wrapping_from(quot).wrapping_mul(v2));
v1 = t2;
v3 = rem;
}
}
// Remarkably, |u1| < x/2, thus comparison with 0 is valid
if u1 <= S::ZERO {
u1.wrapping_add_assign(S::wrapping_from(b));
v1.wrapping_sub_assign(S::wrapping_from(a));
}
// The cofactors at this point are not necessarily minimal, so we may need to adjust.
let gcd = u3;
let mut x = U::wrapping_from(u1);
let mut y = U::wrapping_from(v1);
let two_limit_a = a / gcd;
let two_limit_b = b / gcd;
let limit_b = two_limit_b >> 1;
if x > limit_b {
let k = (x - limit_b).div_round(two_limit_b, Ceiling).0;
x.wrapping_sub_assign(two_limit_b.wrapping_mul(k));
y.wrapping_add_assign(two_limit_a.wrapping_mul(k));
}
if swapped {
swap(&mut x, &mut y);
}
(gcd, S::wrapping_from(x), S::wrapping_from(y))
}}
macro_rules! impl_extended_gcd {
($u:ident, $s:ident) => {
impl ExtendedGcd<$u> for $u {
type Gcd = $u;
type Cofactor = $s;
/// Computes the GCD (greatest common divisor) of two numbers $a$ and $b$, and also the
/// coefficients $x$ and $y$ in Bézout's identity $ax+by=\gcd(a,b)$.
///
/// The are infinitely many $x$, $y$ that satisfy the identity for any $a$, $b$, so the
/// full specification is more detailed:
///
/// - $f(0, 0) = (0, 0, 0)$.
/// - $f(a, ak) = (a, 1, 0)$ if $a > 0$ and $k \neq 1$.
/// - $f(bk, b) = (b, 0, 1)$ if $b > 0$.
/// - $f(a, b) = (g, x, y)$ if $a \neq 0$ and $b \neq 0$ and $\gcd(a, b) \neq \min(a,
/// b)$, where $g = \gcd(a, b) \geq 0$, $ax + by = g$, $x \leq \lfloor b/g \rfloor$,
/// and $y \leq \lfloor a/g \rfloor$.
///
/// # Worst-case complexity
/// $T(n) = O(n^2)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is
/// `max(self.significant_bits(), other.significant_bits())`.
///
/// # Examples
/// See [here](super::extended_gcd#extended_gcd).
#[inline]
fn extended_gcd(self, other: $u) -> ($u, $s, $s) {
extended_gcd_unsigned_binary(self, other)
}
}
impl ExtendedGcd<$s> for $s {
type Gcd = $u;
type Cofactor = $s;
/// Computes the GCD (greatest common divisor) of two numbers $a$ and $b$, and also the
/// coefficients $x$ and $y$ in Bézout's identity $ax+by=\gcd(a,b)$.
///
/// The are infinitely many $x$, $y$ that satisfy the identity for any $a$, $b$, so the
/// full specification is more detailed:
///
/// - $f(0, 0) = (0, 0, 0)$.
/// - $f(a, ak) = (a, 1, 0)$ if $a > 0$ and $k \neq 1$.
/// - $f(a, ak) = (-a, -1, 0)$ if $a < 0$ and $k \neq 1$.
/// - $f(bk, b) = (b, 0, 1)$ if $b > 0$.
/// - $f(bk, b) = (-b, 0, -1)$ if $b < 0$.
/// - $f(a, b) = (g, x, y)$ if $a \neq 0$ and $b \neq 0$ and $\gcd(a, b) \neq \min(|a|,
/// |b|)$, where $g = \gcd(a, b) \geq 0$, $ax + by = g$, $x \leq \lfloor b/g \rfloor$,
/// and $y \leq \lfloor a/g \rfloor$.
///
/// # Worst-case complexity
/// $T(n) = O(n^2)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is
/// `max(self.significant_bits(), other.significant_bits())`.
///
/// # Examples
/// See [here](super::extended_gcd#extended_gcd).
#[inline]
fn extended_gcd(self, other: $s) -> ($u, $s, $s) {
extended_gcd_signed(self, other)
}
}
};
}
apply_to_unsigned_signed_pairs!(impl_extended_gcd);