1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the FLINT Library.
//
// Copyright © 2009, 2016 William Hart
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{Gcd, GcdAssign};
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use core::cmp::min;
#[cfg(feature = "test_build")]
pub fn gcd_euclidean<T: PrimitiveUnsigned>(x: T, y: T) -> T {
if y == T::ZERO {
x
} else {
gcd_euclidean(y, x % y)
}
}
#[cfg(feature = "test_build")]
pub fn gcd_binary<T: PrimitiveUnsigned>(x: T, y: T) -> T {
if x == y {
x
} else if x == T::ZERO {
y
} else if y == T::ZERO {
x
} else if x.even() {
if y.odd() {
gcd_binary(x >> 1, y)
} else {
gcd_binary(x >> 1, y >> 1) << 1
}
} else if y.even() {
gcd_binary(x, y >> 1)
} else if x > y {
gcd_binary((x - y) >> 1, y)
} else {
gcd_binary((y - x) >> 1, x)
}
}
pub_test! {gcd_fast_a<T: PrimitiveUnsigned>(mut x: T, mut y: T) -> T {
if x == T::ZERO {
return y;
}
if y == T::ZERO {
return x;
}
let x_zeros = x.trailing_zeros();
let y_zeros = y.trailing_zeros();
let f = min(x_zeros, y_zeros);
x >>= x_zeros;
y >>= y_zeros;
while x != y {
if x < y {
y -= x;
y >>= y.trailing_zeros();
} else {
x -= y;
x >>= x.trailing_zeros();
}
}
x << f
}}
#[cfg(feature = "test_build")]
// This is a modified version of `n_xgcd` from `ulong_extras/xgcd.c`, FLINT 2.7.1.
pub fn gcd_fast_b<T: PrimitiveUnsigned>(mut x: T, y: T) -> T {
let mut v;
if x >= y {
v = y;
} else {
v = x;
x = y;
}
let mut d;
// x and y both have their top bit set.
if (x & v).get_highest_bit() {
d = x - v;
x = v;
v = d;
}
// The second value has its second-highest set.
while (v << 1u32).get_highest_bit() {
d = x - v;
x = v;
if d < v {
v = d;
} else if d < (v << 1) {
v = d - x;
} else {
v = d - (x << 1);
}
}
while v != T::ZERO {
// Overflow is not possible due to top 2 bits of v not being set. Avoid divisions when
// quotient < 4.
if x < (v << 2) {
d = x - v;
x = v;
if d < v {
v = d;
} else if d < (v << 1) {
v = d - x;
} else {
v = d - (x << 1);
}
} else {
let rem = x % v;
x = v;
v = rem;
}
}
x
}
macro_rules! impl_gcd {
($t:ident) => {
impl Gcd<$t> for $t {
type Output = $t;
/// Computes the GCD (greatest common divisor) of two numbers.
///
/// The GCD of 0 and $n$, for any $n$, is 0. In particular, $\gcd(0, 0) = 0$, which
/// makes sense if we interpret "greatest" to mean "greatest by the divisibility order".
///
/// $$
/// f(x, y) = \gcd(x, y).
/// $$
///
/// # Worst-case complexity
/// $T(n) = O(n^2)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is
/// `max(self.significant_bits(), other.significant_bits())`.
///
/// # Examples
/// See [here](super::gcd#gcd).
#[inline]
fn gcd(self, other: $t) -> $t {
gcd_fast_a(self, other)
}
}
impl GcdAssign<$t> for $t {
/// Replaces another with the GCD (greatest common divisor) of it and another number.
///
/// The GCD of 0 and $n$, for any $n$, is 0. In particular, $\gcd(0, 0) = 0$, which
/// makes sense if we interpret "greatest" to mean "greatest by the divisibility order".
///
/// $$
/// x \gets \gcd(x, y).
/// $$
///
/// # Worst-case complexity
/// $T(n) = O(n^2)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is
/// `max(self.significant_bits(), other.significant_bits())`.
///
/// # Examples
/// See [here](super::gcd#gcd_assign).
#[inline]
fn gcd_assign(&mut self, other: $t) {
*self = gcd_fast_a(*self, other);
}
}
};
}
apply_to_unsigneds!(impl_gcd);