1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{CeilingLogBase2, CheckedLogBase2, FloorLogBase2};
use crate::num::basic::integers::PrimitiveInt;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::SciMantissaAndExponent;
use crate::num::logic::traits::{LeadingZeros, TrailingZeros};
fn floor_log_base_2<T: PrimitiveUnsigned>(x: T) -> u64 {
assert!(x != T::ZERO, "Cannot take the base-2 logarithm of 0.");
x.significant_bits() - 1
}
fn ceiling_log_base_2<T: PrimitiveUnsigned>(x: T) -> u64 {
let floor_log_base_2 = x.floor_log_base_2();
if x.is_power_of_2() {
floor_log_base_2
} else {
floor_log_base_2 + 1
}
}
fn checked_log_base_2<T: PrimitiveInt>(x: T) -> Option<u64> {
assert!(x != T::ZERO, "Cannot take the base-2 logarithm of 0.");
let leading_zeros = LeadingZeros::leading_zeros(x);
let trailing_zeros = TrailingZeros::trailing_zeros(x);
if leading_zeros + trailing_zeros == T::WIDTH - 1 {
Some(trailing_zeros)
} else {
None
}
}
macro_rules! impl_log_base_2_unsigned {
($t:ident) => {
impl FloorLogBase2 for $t {
type Output = u64;
/// Returns the floor of the base-2 logarithm of a positive integer.
///
/// $f(x) = \lfloor\log_2 x\rfloor$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is 0.
///
/// # Examples
/// See [here](super::log_base_2#floor_log_base_2).
#[inline]
fn floor_log_base_2(self) -> u64 {
// TODO use ilog2 once stabilized
floor_log_base_2(self)
}
}
impl CeilingLogBase2 for $t {
type Output = u64;
/// Returns the ceiling of the base-2 logarithm of a positive integer.
///
/// $f(x) = \lceil\log_2 x\rceil$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is 0.
///
/// # Examples
/// See [here](super::log_base_2#ceiling_log_base_2).
#[inline]
fn ceiling_log_base_2(self) -> u64 {
ceiling_log_base_2(self)
}
}
impl CheckedLogBase2 for $t {
type Output = u64;
/// Returns the base-2 logarithm of a positive integer. If the integer is not a power of
/// 2, `None` is returned.
///
/// $$
/// f(x) = \\begin{cases}
/// \operatorname{Some}(\log_2 x) & \text{if} \\quad \log_2 x \in \Z, \\\\
/// \operatorname{None} & \textrm{otherwise}.
/// \\end{cases}
/// $$
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is 0.
///
/// # Examples
/// See [here](super::log_base_2#checked_log_base_2).
#[inline]
fn checked_log_base_2(self) -> Option<u64> {
checked_log_base_2(self)
}
}
};
}
apply_to_unsigneds!(impl_log_base_2_unsigned);
macro_rules! impl_log_base_2_primitive_float {
($t:ident) => {
impl FloorLogBase2 for $t {
type Output = i64;
/// Returns the floor of the base-2 logarithm of a positive float.
///
/// $f(x) = \lfloor\log_2 x\rfloor$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is infinite, `NaN`, or less than or equal to zero.
///
/// # Examples
/// See [here](super::log_base_2#floor_log_base_2).
#[inline]
fn floor_log_base_2(self) -> i64 {
assert!(self > 0.0);
self.sci_exponent()
}
}
impl CeilingLogBase2 for $t {
type Output = i64;
/// Returns the ceiling of the base-2 logarithm of a positive float.
///
/// $f(x) = \lceil\log_2 x\rceil$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is infinite, `NaN`, or less than or equal to zero.
///
/// # Examples
/// See [here](super::log_base_2#ceiling_log_base_2).
#[inline]
fn ceiling_log_base_2(self) -> i64 {
assert!(self > 0.0);
let (mantissa, exponent) = self.sci_mantissa_and_exponent();
if mantissa == 1.0 {
exponent
} else {
exponent + 1
}
}
}
impl CheckedLogBase2 for $t {
type Output = i64;
/// Returns the base-2 logarithm of a positive float If the float is not a power of 2,
/// `None` is returned.
///
/// $$
/// f(x) = \\begin{cases}
/// \operatorname{Some}(\log_2 x) & \text{if} \\quad \log_2 x \in \Z, \\\\
/// \operatorname{None} & \textrm{otherwise}.
/// \\end{cases}
/// $$
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is infinite, `NaN`, or less than or equal to zero.
///
/// # Examples
/// See [here](super::log_base_2#checked_log_base_2).
#[inline]
fn checked_log_base_2(self) -> Option<i64> {
assert!(self > 0.0);
let (mantissa, exponent) = self.sci_mantissa_and_exponent();
if mantissa == 1.0 {
Some(exponent)
} else {
None
}
}
}
};
}
apply_to_primitive_floats!(impl_log_base_2_primitive_float);