1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::arithmetic::traits::{
    CeilingLogBasePowerOf2, CheckedLogBasePowerOf2, DivMod, DivRound, FloorLogBasePowerOf2,
};
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::{ExactFrom, SciMantissaAndExponent};
use crate::rounding_modes::RoundingMode::*;

#[cfg(feature = "test_build")]
pub fn ceiling_log_base_power_of_2_naive<T: PrimitiveUnsigned>(x: T, pow: u64) -> u64 {
    assert_ne!(x, T::ZERO);
    assert_ne!(pow, 0);
    if pow >= T::WIDTH {
        return u64::from(x != T::ONE);
    }
    let mut result = 0;
    let mut p = T::ONE;
    while p < x {
        let highest_possible = p.leading_zeros() < pow;
        result += 1;
        if highest_possible {
            break;
        }
        p <<= pow;
    }
    result
}

fn floor_log_base_power_of_2<T: PrimitiveUnsigned>(x: T, pow: u64) -> u64 {
    assert!(x != T::ZERO, "Cannot take the base-2 logarithm of 0.");
    assert_ne!(pow, 0);
    (x.significant_bits() - 1) / pow
}

fn ceiling_log_base_power_of_2<T: PrimitiveUnsigned>(x: T, pow: u64) -> u64 {
    assert!(x != T::ZERO, "Cannot take the base-2 logarithm of 0.");
    assert_ne!(pow, 0);
    let (floor_log, rem) = (x.significant_bits() - 1).div_mod(pow);
    if rem == 0 && T::is_power_of_2(&x) {
        floor_log
    } else {
        floor_log + 1
    }
}

fn checked_log_base_power_of_2<T: PrimitiveUnsigned>(x: T, pow: u64) -> Option<u64> {
    assert!(x != T::ZERO, "Cannot take the base-2 logarithm of 0.");
    assert_ne!(pow, 0);
    let (floor_log, rem) = (x.significant_bits() - 1).div_mod(pow);
    if rem == 0 && T::is_power_of_2(&x) {
        Some(floor_log)
    } else {
        None
    }
}

macro_rules! impl_log_base_power_of_2_unsigned {
    ($t:ident) => {
        impl FloorLogBasePowerOf2<u64> for $t {
            type Output = u64;

            /// Returns the floor of the base-$2^k$ logarithm of a positive integer.
            ///
            /// $f(x, k) = \lfloor\log_{2^k} x\rfloor$.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Panics
            /// Panics if `self` is infinite, `NaN`, or less than or equal to zero, or if `pow` is
            /// zero.
            ///
            /// # Examples
            /// See [here](super::log_base_power_of_2#floor_log_base_power_of_2).
            #[inline]
            fn floor_log_base_power_of_2(self, pow: u64) -> u64 {
                floor_log_base_power_of_2(self, pow)
            }
        }

        impl CeilingLogBasePowerOf2<u64> for $t {
            type Output = u64;

            /// Returns the ceiling of the base-$2^k$ logarithm of a positive integer.
            ///
            /// $f(x, k) = \lceil\log_{2^k} x\rceil$.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Panics
            /// Panics if `self` is infinite, `NaN`, or less than or equal to zero, or if `pow` is
            /// zero.
            ///
            /// # Examples
            /// See [here](super::log_base_power_of_2#ceiling_log_base_power_of_2).
            #[inline]
            fn ceiling_log_base_power_of_2(self, pow: u64) -> u64 {
                ceiling_log_base_power_of_2(self, pow)
            }
        }

        impl CheckedLogBasePowerOf2<u64> for $t {
            type Output = u64;

            /// Returns the base-$2^k$ logarithm of a positive integer. If the integer is not a
            /// power of $2^k$, `None` is returned.
            ///
            /// $$
            /// f(x, k) = \\begin{cases}
            ///     \operatorname{Some}(\log_{2^k} x) & \text{if} \\quad \log_{2^k} x \in \Z, \\\\
            ///     \operatorname{None} & \textrm{otherwise}.
            /// \\end{cases}
            /// $$
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Panics
            /// Panics if `self` is infinite, `NaN`, or less than or equal to zero, or if `pow` is
            /// zero.
            ///
            /// # Examples
            /// See [here](super::log_base_power_of_2#ceiling_log_base_power_of_2).
            #[inline]
            fn checked_log_base_power_of_2(self, pow: u64) -> Option<u64> {
                checked_log_base_power_of_2(self, pow)
            }
        }
    };
}
apply_to_unsigneds!(impl_log_base_power_of_2_unsigned);

macro_rules! impl_log_base_power_of_2_primitive_float {
    ($t:ident) => {
        impl FloorLogBasePowerOf2<u64> for $t {
            type Output = i64;

            /// Returns the floor of the base-$2^k$ logarithm of a positive float.
            ///
            /// $f(x, k) = \lfloor\log_{2^k} x\rfloor$.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Panics
            /// Panics if `self` or `pow` are 0.
            ///
            /// # Examples
            /// See [here](super::log_base_power_of_2#floor_log_base_power_of_2).
            #[inline]
            fn floor_log_base_power_of_2(self, pow: u64) -> i64 {
                assert!(self > 0.0);
                self.sci_exponent().div_round(i64::exact_from(pow), Floor).0
            }
        }

        impl CeilingLogBasePowerOf2<u64> for $t {
            type Output = i64;

            /// Returns the ceiling of the base-$2^k$ logarithm of a positive float.
            ///
            /// $f(x, k) = \lceil\log_{2^k} x\rceil$.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Panics
            /// Panics if `self` or `pow` are 0.
            ///
            /// # Examples
            /// See [here](super::log_base_power_of_2#ceiling_log_base_power_of_2).
            #[inline]
            fn ceiling_log_base_power_of_2(self, pow: u64) -> i64 {
                assert!(self > 0.0);
                let (mantissa, exponent) = self.sci_mantissa_and_exponent();
                let exact = mantissa == 1.0;
                let (q, r) = exponent.div_mod(i64::exact_from(pow));
                if exact && r == 0 {
                    q
                } else {
                    q + 1
                }
            }
        }

        impl CheckedLogBasePowerOf2<u64> for $t {
            type Output = i64;

            /// Returns the base-$2^k$ logarithm of a positive float. If the float is not a power of
            /// $2^k$, `None` is returned.
            ///
            /// $$
            /// f(x, k) = \\begin{cases}
            ///     \operatorname{Some}(\log_{2^k} x) & \text{if} \\quad \log_{2^k} x \in \Z, \\\\
            ///     \operatorname{None} & \textrm{otherwise}.
            /// \\end{cases}
            /// $$
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Panics
            /// Panics if `self` or `pow` are 0.
            ///
            /// # Examples
            /// See [here](super::log_base_power_of_2#checked_log_base_power_of_2).
            #[inline]
            fn checked_log_base_power_of_2(self, pow: u64) -> Option<i64> {
                assert!(self > 0.0);
                let (mantissa, exponent) = self.sci_mantissa_and_exponent();
                if mantissa != 1.0 {
                    return None;
                }
                let (q, r) = exponent.div_mod(i64::exact_from(pow));
                if r == 0 {
                    Some(q)
                } else {
                    None
                }
            }
        }
    };
}
apply_to_primitive_floats!(impl_log_base_power_of_2_primitive_float);