1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{
CeilingLogBasePowerOf2, CheckedLogBasePowerOf2, DivMod, DivRound, FloorLogBasePowerOf2,
};
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::{ExactFrom, SciMantissaAndExponent};
use crate::rounding_modes::RoundingMode::*;
#[cfg(feature = "test_build")]
pub fn ceiling_log_base_power_of_2_naive<T: PrimitiveUnsigned>(x: T, pow: u64) -> u64 {
assert_ne!(x, T::ZERO);
assert_ne!(pow, 0);
if pow >= T::WIDTH {
return u64::from(x != T::ONE);
}
let mut result = 0;
let mut p = T::ONE;
while p < x {
let highest_possible = p.leading_zeros() < pow;
result += 1;
if highest_possible {
break;
}
p <<= pow;
}
result
}
fn floor_log_base_power_of_2<T: PrimitiveUnsigned>(x: T, pow: u64) -> u64 {
assert!(x != T::ZERO, "Cannot take the base-2 logarithm of 0.");
assert_ne!(pow, 0);
(x.significant_bits() - 1) / pow
}
fn ceiling_log_base_power_of_2<T: PrimitiveUnsigned>(x: T, pow: u64) -> u64 {
assert!(x != T::ZERO, "Cannot take the base-2 logarithm of 0.");
assert_ne!(pow, 0);
let (floor_log, rem) = (x.significant_bits() - 1).div_mod(pow);
if rem == 0 && T::is_power_of_2(&x) {
floor_log
} else {
floor_log + 1
}
}
fn checked_log_base_power_of_2<T: PrimitiveUnsigned>(x: T, pow: u64) -> Option<u64> {
assert!(x != T::ZERO, "Cannot take the base-2 logarithm of 0.");
assert_ne!(pow, 0);
let (floor_log, rem) = (x.significant_bits() - 1).div_mod(pow);
if rem == 0 && T::is_power_of_2(&x) {
Some(floor_log)
} else {
None
}
}
macro_rules! impl_log_base_power_of_2_unsigned {
($t:ident) => {
impl FloorLogBasePowerOf2<u64> for $t {
type Output = u64;
/// Returns the floor of the base-$2^k$ logarithm of a positive integer.
///
/// $f(x, k) = \lfloor\log_{2^k} x\rfloor$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is infinite, `NaN`, or less than or equal to zero, or if `pow` is
/// zero.
///
/// # Examples
/// See [here](super::log_base_power_of_2#floor_log_base_power_of_2).
#[inline]
fn floor_log_base_power_of_2(self, pow: u64) -> u64 {
floor_log_base_power_of_2(self, pow)
}
}
impl CeilingLogBasePowerOf2<u64> for $t {
type Output = u64;
/// Returns the ceiling of the base-$2^k$ logarithm of a positive integer.
///
/// $f(x, k) = \lceil\log_{2^k} x\rceil$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is infinite, `NaN`, or less than or equal to zero, or if `pow` is
/// zero.
///
/// # Examples
/// See [here](super::log_base_power_of_2#ceiling_log_base_power_of_2).
#[inline]
fn ceiling_log_base_power_of_2(self, pow: u64) -> u64 {
ceiling_log_base_power_of_2(self, pow)
}
}
impl CheckedLogBasePowerOf2<u64> for $t {
type Output = u64;
/// Returns the base-$2^k$ logarithm of a positive integer. If the integer is not a
/// power of $2^k$, `None` is returned.
///
/// $$
/// f(x, k) = \\begin{cases}
/// \operatorname{Some}(\log_{2^k} x) & \text{if} \\quad \log_{2^k} x \in \Z, \\\\
/// \operatorname{None} & \textrm{otherwise}.
/// \\end{cases}
/// $$
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is infinite, `NaN`, or less than or equal to zero, or if `pow` is
/// zero.
///
/// # Examples
/// See [here](super::log_base_power_of_2#ceiling_log_base_power_of_2).
#[inline]
fn checked_log_base_power_of_2(self, pow: u64) -> Option<u64> {
checked_log_base_power_of_2(self, pow)
}
}
};
}
apply_to_unsigneds!(impl_log_base_power_of_2_unsigned);
macro_rules! impl_log_base_power_of_2_primitive_float {
($t:ident) => {
impl FloorLogBasePowerOf2<u64> for $t {
type Output = i64;
/// Returns the floor of the base-$2^k$ logarithm of a positive float.
///
/// $f(x, k) = \lfloor\log_{2^k} x\rfloor$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` or `pow` are 0.
///
/// # Examples
/// See [here](super::log_base_power_of_2#floor_log_base_power_of_2).
#[inline]
fn floor_log_base_power_of_2(self, pow: u64) -> i64 {
assert!(self > 0.0);
self.sci_exponent().div_round(i64::exact_from(pow), Floor).0
}
}
impl CeilingLogBasePowerOf2<u64> for $t {
type Output = i64;
/// Returns the ceiling of the base-$2^k$ logarithm of a positive float.
///
/// $f(x, k) = \lceil\log_{2^k} x\rceil$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` or `pow` are 0.
///
/// # Examples
/// See [here](super::log_base_power_of_2#ceiling_log_base_power_of_2).
#[inline]
fn ceiling_log_base_power_of_2(self, pow: u64) -> i64 {
assert!(self > 0.0);
let (mantissa, exponent) = self.sci_mantissa_and_exponent();
let exact = mantissa == 1.0;
let (q, r) = exponent.div_mod(i64::exact_from(pow));
if exact && r == 0 {
q
} else {
q + 1
}
}
}
impl CheckedLogBasePowerOf2<u64> for $t {
type Output = i64;
/// Returns the base-$2^k$ logarithm of a positive float. If the float is not a power of
/// $2^k$, `None` is returned.
///
/// $$
/// f(x, k) = \\begin{cases}
/// \operatorname{Some}(\log_{2^k} x) & \text{if} \\quad \log_{2^k} x \in \Z, \\\\
/// \operatorname{None} & \textrm{otherwise}.
/// \\end{cases}
/// $$
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` or `pow` are 0.
///
/// # Examples
/// See [here](super::log_base_power_of_2#checked_log_base_power_of_2).
#[inline]
fn checked_log_base_power_of_2(self, pow: u64) -> Option<i64> {
assert!(self > 0.0);
let (mantissa, exponent) = self.sci_mantissa_and_exponent();
if mantissa != 1.0 {
return None;
}
let (q, r) = exponent.div_mod(i64::exact_from(pow));
if r == 0 {
Some(q)
} else {
None
}
}
}
};
}
apply_to_primitive_floats!(impl_log_base_power_of_2_primitive_float);