1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the FLINT Library.
//
// Copyright © 2009, 2016 William Hart
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::ModInverse;
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::WrappingFrom;
use crate::rounding_modes::RoundingMode::*;
// This is a variation of `n_xgcd` from `ulong_extras/xgcd.c`, FLINT 2.7.1.
pub_test! {mod_inverse_binary<
U: WrappingFrom<S> + PrimitiveUnsigned,
S: PrimitiveSigned + WrappingFrom<U>,
>(
x: U,
m: U,
) -> Option<U> {
assert_ne!(x, U::ZERO);
assert!(x < m, "x must be reduced mod m, but {x} >= {m}");
let mut u1 = S::ONE;
let mut v2 = S::ONE;
let mut u2 = S::ZERO;
let mut v1 = S::ZERO;
let mut u3 = m;
let mut v3 = x;
let mut d;
let mut t2;
let mut t1;
if (m & x).get_highest_bit() {
d = u3 - v3;
t2 = v2;
t1 = u2;
u2 = u1 - u2;
u1 = t1;
u3 = v3;
v2 = v1 - v2;
v1 = t2;
v3 = d;
}
while v3.get_bit(U::WIDTH - 2) {
d = u3 - v3;
if d < v3 {
// quot = 1
t2 = v2;
t1 = u2;
u2 = u1 - u2;
u1 = t1;
u3 = v3;
v2 = v1 - v2;
v1 = t2;
v3 = d;
} else if d < (v3 << 1) {
// quot = 2
t1 = u2;
u2 = u1 - (u2 << 1);
u1 = t1;
u3 = v3;
t2 = v2;
v2 = v1 - (v2 << 1);
v1 = t2;
v3 = d - u3;
} else {
// quot = 3
t1 = u2;
u2 = u1 - S::wrapping_from(3) * u2;
u1 = t1;
u3 = v3;
t2 = v2;
v2 = v1 - S::wrapping_from(3) * v2;
v1 = t2;
v3 = d - (u3 << 1);
}
}
while v3 != U::ZERO {
d = u3 - v3;
// overflow not possible, top 2 bits of v3 not set
if u3 < (v3 << 2) {
if d < v3 {
// quot = 1
t2 = v2;
t1 = u2;
u2 = u1 - u2;
u1 = t1;
u3 = v3;
v2 = v1 - v2;
v1 = t2;
v3 = d;
} else if d < (v3 << 1) {
// quot = 2
t1 = u2;
u2 = u1.wrapping_sub(u2 << 1);
u1 = t1;
u3 = v3;
t2 = v2;
v2 = v1.wrapping_sub(v2 << 1);
v1 = t2;
v3 = d - u3;
} else {
// quot = 3
t1 = u2;
u2 = u1.wrapping_sub(S::wrapping_from(3).wrapping_mul(u2));
u1 = t1;
u3 = v3;
t2 = v2;
v2 = v1.wrapping_sub(S::wrapping_from(3).wrapping_mul(v2));
v1 = t2;
v3 = d.wrapping_sub(u3 << 1);
}
} else {
let (quot, rem) = u3.div_rem(v3);
t1 = u2;
u2 = u1.wrapping_sub(S::wrapping_from(quot).wrapping_mul(u2));
u1 = t1;
u3 = v3;
t2 = v2;
v2 = v1.wrapping_sub(S::wrapping_from(quot).wrapping_mul(v2));
v1 = t2;
v3 = rem;
}
}
if u3 != U::ONE {
return None;
}
let mut inverse = U::wrapping_from(v1);
if u1 <= S::ZERO {
inverse.wrapping_sub_assign(m);
}
let limit = (m >> 1u32).wrapping_neg();
if inverse < limit {
let k = (limit - inverse).div_round(m, Ceiling).0;
inverse.wrapping_add_assign(m.wrapping_mul(k));
}
Some(if inverse.get_highest_bit() {
inverse.wrapping_add(m)
} else {
inverse
})
}}
macro_rules! impl_mod_inverse {
($u:ident, $s:ident) => {
impl ModInverse<$u> for $u {
type Output = $u;
/// Computes the multiplicative inverse of a number modulo another number $m$. The input
/// must be already reduced modulo $m$.
///
/// Returns `None` if $x$ and $m$ are not coprime.
///
/// $f(x, m) = y$, where $x, y < m$, $\gcd(x, y) = 1$, and $xy \equiv 1 \mod m$.
///
/// # Worst-case complexity
/// $T(n) = O(n^2)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is
/// `max(self.significant_bits(), m.significant_bits())`.
///
/// # Panics
/// Panics if `self` is greater than or equal to `m`.
///
/// # Examples
/// See [here](super::mod_inverse#mod_inverse).
#[inline]
fn mod_inverse(self, m: $u) -> Option<$u> {
mod_inverse_binary::<$u, $s>(self, m)
}
}
};
}
apply_to_unsigned_signed_pairs!(impl_mod_inverse);