1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the FLINT Library.
//
//      Copyright © 2009, 2016 William Hart
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::arithmetic::traits::ModInverse;
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::WrappingFrom;
use crate::rounding_modes::RoundingMode::*;

// This is a variation of `n_xgcd` from `ulong_extras/xgcd.c`, FLINT 2.7.1.
pub_test! {mod_inverse_binary<
    U: WrappingFrom<S> + PrimitiveUnsigned,
    S: PrimitiveSigned + WrappingFrom<U>,
>(
    x: U,
    m: U,
) -> Option<U> {
    assert_ne!(x, U::ZERO);
    assert!(x < m, "x must be reduced mod m, but {x} >= {m}");
    let mut u1 = S::ONE;
    let mut v2 = S::ONE;
    let mut u2 = S::ZERO;
    let mut v1 = S::ZERO;
    let mut u3 = m;
    let mut v3 = x;
    let mut d;
    let mut t2;
    let mut t1;
    if (m & x).get_highest_bit() {
        d = u3 - v3;
        t2 = v2;
        t1 = u2;
        u2 = u1 - u2;
        u1 = t1;
        u3 = v3;
        v2 = v1 - v2;
        v1 = t2;
        v3 = d;
    }
    while v3.get_bit(U::WIDTH - 2) {
        d = u3 - v3;
        if d < v3 {
            // quot = 1
            t2 = v2;
            t1 = u2;
            u2 = u1 - u2;
            u1 = t1;
            u3 = v3;
            v2 = v1 - v2;
            v1 = t2;
            v3 = d;
        } else if d < (v3 << 1) {
            // quot = 2
            t1 = u2;
            u2 = u1 - (u2 << 1);
            u1 = t1;
            u3 = v3;
            t2 = v2;
            v2 = v1 - (v2 << 1);
            v1 = t2;
            v3 = d - u3;
        } else {
            // quot = 3
            t1 = u2;
            u2 = u1 - S::wrapping_from(3) * u2;
            u1 = t1;
            u3 = v3;
            t2 = v2;
            v2 = v1 - S::wrapping_from(3) * v2;
            v1 = t2;
            v3 = d - (u3 << 1);
        }
    }
    while v3 != U::ZERO {
        d = u3 - v3;
        // overflow not possible, top 2 bits of v3 not set
        if u3 < (v3 << 2) {
            if d < v3 {
                // quot = 1
                t2 = v2;
                t1 = u2;
                u2 = u1 - u2;
                u1 = t1;
                u3 = v3;
                v2 = v1 - v2;
                v1 = t2;
                v3 = d;
            } else if d < (v3 << 1) {
                // quot = 2
                t1 = u2;
                u2 = u1.wrapping_sub(u2 << 1);
                u1 = t1;
                u3 = v3;
                t2 = v2;
                v2 = v1.wrapping_sub(v2 << 1);
                v1 = t2;
                v3 = d - u3;
            } else {
                // quot = 3
                t1 = u2;
                u2 = u1.wrapping_sub(S::wrapping_from(3).wrapping_mul(u2));
                u1 = t1;
                u3 = v3;
                t2 = v2;
                v2 = v1.wrapping_sub(S::wrapping_from(3).wrapping_mul(v2));
                v1 = t2;
                v3 = d.wrapping_sub(u3 << 1);
            }
        } else {
            let (quot, rem) = u3.div_rem(v3);
            t1 = u2;
            u2 = u1.wrapping_sub(S::wrapping_from(quot).wrapping_mul(u2));
            u1 = t1;
            u3 = v3;
            t2 = v2;
            v2 = v1.wrapping_sub(S::wrapping_from(quot).wrapping_mul(v2));
            v1 = t2;
            v3 = rem;
        }
    }
    if u3 != U::ONE {
        return None;
    }
    let mut inverse = U::wrapping_from(v1);
    if u1 <= S::ZERO {
        inverse.wrapping_sub_assign(m);
    }
    let limit = (m >> 1u32).wrapping_neg();
    if inverse < limit {
        let k = (limit - inverse).div_round(m, Ceiling).0;
        inverse.wrapping_add_assign(m.wrapping_mul(k));
    }
    Some(if inverse.get_highest_bit() {
        inverse.wrapping_add(m)
    } else {
        inverse
    })
}}

macro_rules! impl_mod_inverse {
    ($u:ident, $s:ident) => {
        impl ModInverse<$u> for $u {
            type Output = $u;

            /// Computes the multiplicative inverse of a number modulo another number $m$. The input
            /// must be already reduced modulo $m$.
            ///
            /// Returns `None` if $x$ and $m$ are not coprime.
            ///
            /// $f(x, m) = y$, where $x, y < m$, $\gcd(x, y) = 1$, and $xy \equiv 1 \mod m$.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n^2)$
            ///
            /// $M(n) = O(n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is
            /// `max(self.significant_bits(), m.significant_bits())`.
            ///
            /// # Panics
            /// Panics if `self` is greater than or equal to `m`.
            ///
            /// # Examples
            /// See [here](super::mod_inverse#mod_inverse).
            #[inline]
            fn mod_inverse(self, m: $u) -> Option<$u> {
                mod_inverse_binary::<$u, $s>(self, m)
            }
        }
    };
}
apply_to_unsigned_signed_pairs!(impl_mod_inverse);