1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the FLINT Library.
//
// Copyright © 2009, 2010, 2012, 2016 William Hart
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::mod_mul::{limbs_invert_limb_u32, limbs_invert_limb_u64};
use crate::num::arithmetic::traits::{
ModPow, ModPowAssign, ModPowPrecomputed, ModPowPrecomputedAssign,
};
use crate::num::basic::integers::PrimitiveInt;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::WrappingFrom;
use crate::num::conversion::traits::{HasHalf, JoinHalves, SplitInHalf};
use crate::num::logic::traits::{BitIterable, LeadingZeros};
pub_test! {simple_binary_mod_pow<T: PrimitiveUnsigned>(x: T, exp: u64, m: T) -> T {
assert!(x < m, "x must be reduced mod m, but {x} >= {m}");
if m == T::ONE {
return T::ZERO;
}
let data = T::precompute_mod_mul_data(&m);
let mut out = T::ONE;
for bit in exp.bits().rev() {
out.mod_mul_precomputed_assign(out, m, &data);
if bit {
out.mod_mul_precomputed_assign(x, m, &data);
}
}
out
}}
// m.get_highest_bit(), x < m, y < m
//
// This is equivalent to `n_mulmod_preinv` from `ulong_extras/mulmod_preinv.c`, FLINT 2.7.1.
fn mul_mod_helper<
T: PrimitiveUnsigned,
DT: From<T> + HasHalf<Half = T> + JoinHalves + PrimitiveUnsigned + SplitInHalf,
>(
mut x: T,
y: T,
m: T,
inverse: T,
shift: u64,
) -> T {
x >>= shift;
let p = DT::from(x) * DT::from(y);
let (p_hi, p_lo) = p.split_in_half();
let (q_1, q_0) = (DT::from(p_hi) * DT::from(inverse))
.wrapping_add(p)
.split_in_half();
let mut r = p_lo.wrapping_sub(q_1.wrapping_add(T::ONE).wrapping_mul(m));
if r > q_0 {
r.wrapping_add_assign(m);
}
if r < m {
r
} else {
r.wrapping_sub(m)
}
}
// m.get_highest_bit(), x < m
//
// This is equivalent to `n_powmod_ui_preinv` from ulong_extras/powmod_ui_preinv.c, FLINT 2.7.1.
fn fast_mod_pow<
T: PrimitiveUnsigned,
DT: From<T> + HasHalf<Half = T> + JoinHalves + PrimitiveUnsigned + SplitInHalf,
>(
mut x: T,
exp: u64,
m: T,
inverse: T,
shift: u64,
) -> T {
assert!(x < m, "x must be reduced mod m, but {x} >= {m}");
if exp == 0 {
let x = T::power_of_2(shift);
if x == m {
T::ZERO
} else {
x
}
} else if x == T::ZERO {
T::ZERO
} else {
let mut bits = exp.bits();
let mut out = if bits.next().unwrap() {
x
} else {
T::power_of_2(shift)
};
for bit in bits {
x = mul_mod_helper::<T, DT>(x, x, m, inverse, shift);
if bit {
out = mul_mod_helper::<T, DT>(out, x, m, inverse, shift);
}
}
out
}
}
macro_rules! impl_mod_pow_precomputed_fast {
($t:ident, $dt:ident, $invert_limb:ident) => {
impl ModPowPrecomputed<u64, $t> for $t {
type Output = $t;
type Data = ($t, u64);
/// Precomputes data for modular exponentiation.
///
/// See `mod_pow_precomputed` and
/// [`mod_pow_precomputed_assign`](super::traits::ModPowPrecomputedAssign).
///
/// # Worst-case complexity
/// Constant time and additional memory.
fn precompute_mod_pow_data(&m: &$t) -> ($t, u64) {
let leading_zeros = LeadingZeros::leading_zeros(m);
($invert_limb(m << leading_zeros), leading_zeros)
}
/// Raises a number to a power modulo another number $m$. The base must be already
/// reduced modulo $m$.
///
/// Some precomputed data is provided; this speeds up computations involving several
/// modular exponentiations with the same modulus. The precomputed data should be
/// obtained using
/// [`precompute_mod_pow_data`](ModPowPrecomputed::precompute_mod_pow_data).
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `exp.significant_bits()`.
///
/// # Panics
/// Panics if `self` is greater than or equal to `m`.
///
/// # Examples
/// See [here](super::mod_pow#mod_pow_precomputed).
fn mod_pow_precomputed(self, exp: u64, m: $t, data: &($t, u64)) -> $t {
let (inverse, shift) = *data;
fast_mod_pow::<$t, $dt>(self << shift, exp, m << shift, inverse, shift) >> shift
}
}
};
}
impl_mod_pow_precomputed_fast!(u32, u64, limbs_invert_limb_u32);
impl_mod_pow_precomputed_fast!(u64, u128, limbs_invert_limb_u64);
macro_rules! impl_mod_pow_precomputed_promoted {
($t:ident) => {
impl ModPowPrecomputed<u64, $t> for $t {
type Output = $t;
type Data = (u32, u64);
/// Precomputes data for modular exponentiation.
///
/// See `mod_pow_precomputed` and
/// [`mod_pow_precomputed_assign`](super::traits::ModPowPrecomputedAssign).
///
/// # Worst-case complexity
/// Constant time and additional memory.
fn precompute_mod_pow_data(&m: &$t) -> (u32, u64) {
u32::precompute_mod_pow_data(&u32::from(m))
}
/// Raises a number to a power modulo another number $m$. The base must be already
/// reduced modulo $m$.
///
/// Some precomputed data is provided; this speeds up computations involving several
/// modular exponentiations with the same modulus. The precomputed data should be
/// obtained using
/// [`precompute_mod_pow_data`](ModPowPrecomputed::precompute_mod_pow_data).
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `exp.significant_bits()`.
///
/// # Panics
/// Panics if `self` is greater than or equal to `m`.
///
/// # Examples
/// See [here](super::mod_pow#mod_pow_precomputed).
fn mod_pow_precomputed(self, exp: u64, m: $t, data: &(u32, u64)) -> $t {
$t::wrapping_from(u32::from(self).mod_pow_precomputed(exp, u32::from(m), data))
}
}
};
}
impl_mod_pow_precomputed_promoted!(u8);
impl_mod_pow_precomputed_promoted!(u16);
impl ModPowPrecomputed<u64, u128> for u128 {
type Output = u128;
type Data = ();
/// Precomputes data for modular exponentiation.
///
/// See `mod_pow_precomputed` and
/// [`mod_pow_precomputed_assign`](super::traits::ModPowPrecomputedAssign).
///
/// # Worst-case complexity
/// Constant time and additional memory.
fn precompute_mod_pow_data(_m: &u128) {}
/// Raises a number to a power modulo another number $m$. The base must be already reduced
/// modulo $m$.
///
/// Some precomputed data is provided; this speeds up computations involving several modular
/// exponentiations with the same modulus. The precomputed data should be obtained using
/// [`precompute_mod_pow_data`](ModPowPrecomputed::precompute_mod_pow_data).
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `exp.significant_bits()`.
///
/// # Panics
/// Panics if `self` is greater than or equal to `m`.
///
/// # Examples
/// See [here](super::mod_pow#mod_pow_precomputed).
#[inline]
fn mod_pow_precomputed(self, exp: u64, m: u128, _data: &()) -> u128 {
simple_binary_mod_pow(self, exp, m)
}
}
impl ModPowPrecomputed<u64, usize> for usize {
type Output = usize;
type Data = (usize, u64);
/// Precomputes data for modular exponentiation.
///
/// See `mod_pow_precomputed` and
/// [`mod_pow_precomputed_assign`](super::traits::ModPowPrecomputedAssign).
///
/// # Worst-case complexity
/// Constant time and additional memory.
fn precompute_mod_pow_data(&m: &usize) -> (usize, u64) {
if usize::WIDTH == u32::WIDTH {
let (inverse, shift) = u32::precompute_mod_pow_data(&u32::wrapping_from(m));
(usize::wrapping_from(inverse), shift)
} else {
let (inverse, shift) = u64::precompute_mod_pow_data(&u64::wrapping_from(m));
(usize::wrapping_from(inverse), shift)
}
}
/// Raises a number to a power modulo another number $m$. The base must be already reduced
/// modulo $m$.
///
/// Some precomputed data is provided; this speeds up computations involving several modular
/// exponentiations with the same modulus. The precomputed data should be obtained using
/// [`precompute_mod_pow_data`](ModPowPrecomputed::precompute_mod_pow_data).
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `exp.significant_bits()`.
///
/// # Panics
/// Panics if `self` is greater than or equal to `m`.
///
/// # Examples
/// See [here](super::mod_pow#mod_pow_precomputed).
fn mod_pow_precomputed(self, exp: u64, m: usize, data: &(usize, u64)) -> usize {
let (inverse, shift) = *data;
if usize::WIDTH == u32::WIDTH {
usize::wrapping_from(u32::wrapping_from(self).mod_pow_precomputed(
exp,
u32::wrapping_from(m),
&(u32::wrapping_from(inverse), shift),
))
} else {
usize::wrapping_from(u64::wrapping_from(self).mod_pow_precomputed(
exp,
u64::wrapping_from(m),
&(u64::wrapping_from(inverse), shift),
))
}
}
}
macro_rules! impl_mod_pow {
($t:ident) => {
impl ModPowPrecomputedAssign<u64, $t> for $t {
/// Raises a number to a power modulo another number $m$, in place. The base must be
/// already reduced modulo $m$.
///
/// Some precomputed data is provided; this speeds up computations involving several
/// modular exponentiations with the same modulus. The precomputed data should be
/// obtained using
/// [`precompute_mod_pow_data`](ModPowPrecomputed::precompute_mod_pow_data).
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `exp.significant_bits()`.
///
/// # Examples
/// See [here](super::mod_pow#mod_pow_precomputed_assign).
#[inline]
fn mod_pow_precomputed_assign(&mut self, exp: u64, m: $t, data: &Self::Data) {
*self = self.mod_pow_precomputed(exp, m, data);
}
}
impl ModPow<u64> for $t {
type Output = $t;
/// Raises a number to a power modulo another number $m$. The base must be already
/// reduced modulo $m$.
///
/// $f(x, n, m) = y$, where $x, y < m$ and $x^n \equiv y \mod m$.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `exp.significant_bits()`.
///
/// # Panics
/// Panics if `self` is greater than or equal to `m`.
///
/// # Examples
/// See [here](super::mod_pow#mod_pow).
#[inline]
fn mod_pow(self, exp: u64, m: $t) -> $t {
simple_binary_mod_pow(self, exp, m)
}
}
impl ModPowAssign<u64> for $t {
/// Raises a number to a power modulo another number $m$, in place. The base must be
/// already reduced modulo $m$.
///
/// $x \gets y$, where $x, y < m$ and $x^n \equiv y \mod m$.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `exp.significant_bits()`.
///
/// # Panics
/// Panics if `self` is greater than or equal to `m`.
///
/// # Examples
/// See [here](super::mod_pow#mod_pow_assign).
#[inline]
fn mod_pow_assign(&mut self, exp: u64, m: $t) {
*self = simple_binary_mod_pow(*self, exp, m);
}
}
};
}
apply_to_unsigneds!(impl_mod_pow);