1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{ModPowerOf2Sub, ModPowerOf2SubAssign};
use crate::num::basic::unsigneds::PrimitiveUnsigned;
fn mod_power_of_2_sub<T: PrimitiveUnsigned>(x: T, y: T, pow: u64) -> T {
assert!(pow <= T::WIDTH);
assert!(
x.significant_bits() <= pow,
"x must be reduced mod 2^pow, but {x} >= 2^{pow}"
);
assert!(
y.significant_bits() <= pow,
"y must be reduced mod 2^pow, but {y} >= 2^{pow}"
);
x.wrapping_sub(y).mod_power_of_2(pow)
}
fn mod_power_of_2_sub_assign<T: PrimitiveUnsigned>(x: &mut T, y: T, pow: u64) {
assert!(pow <= T::WIDTH);
assert!(
x.significant_bits() <= pow,
"x must be reduced mod 2^pow, but {x} >= 2^{pow}"
);
assert!(
y.significant_bits() <= pow,
"y must be reduced mod 2^pow, but {y} >= 2^{pow}"
);
x.wrapping_sub_assign(y);
x.mod_power_of_2_assign(pow);
}
macro_rules! impl_mod_power_of_2_sub {
($t:ident) => {
impl ModPowerOf2Sub<$t> for $t {
type Output = $t;
/// Subtracts two numbers modulo a third number $2^k$. The inputs must be already
/// reduced modulo $2^k$.
///
/// $f(x, y, k) = z$, where $x, y, z < 2^k$ and $x - y \equiv z \mod 2^k$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `pow` is greater than `Self::WIDTH` or if `self` or `other` are greater
/// than or equal to $2^k$.
///
/// # Examples
/// See [here](super::mod_power_of_2_sub#mod_power_of_2_sub).
#[inline]
fn mod_power_of_2_sub(self, other: $t, pow: u64) -> $t {
mod_power_of_2_sub(self, other, pow)
}
}
impl ModPowerOf2SubAssign<$t> for $t {
/// Subtracts two numbers modulo a third number $2^k$, in place. The inputs must be
/// already reduced modulo $2^k$.
///
/// $x \gets z$, where $x, y, z < 2^k$ and $x - y \equiv z \mod 2^k$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `pow` is greater than `Self::WIDTH` or if `self` or `other` are greater
/// than or equal to $2^k$.
///
/// # Examples
/// See [here](super::mod_power_of_2_sub#mod_power_of_2_sub_assign).
#[inline]
fn mod_power_of_2_sub_assign(&mut self, other: $t, pow: u64) {
mod_power_of_2_sub_assign(self, other, pow);
}
}
};
}
apply_to_unsigneds!(impl_mod_power_of_2_sub);