1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{
OverflowingSubAssign, OverflowingSubMul, OverflowingSubMulAssign, UnsignedAbs,
};
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
fn overflowing_sub_mul_unsigned<T: PrimitiveUnsigned>(x: T, y: T, z: T) -> (T, bool) {
let (product, overflow_1) = y.overflowing_mul(z);
let (result, overflow_2) = x.overflowing_sub(product);
(result, overflow_1 | overflow_2)
}
macro_rules! impl_overflowing_sub_mul_unsigned {
($t:ident) => {
impl OverflowingSubMul<$t> for $t {
type Output = $t;
/// Subtracts a number by the product of two other numbers.
///
/// Returns a tuple containing the result and a boolean indicating whether an arithmetic
/// overflow would occur. If an overflow would have occurred, then the wrapped value is
/// returned.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::overflowing_sub_mul#overflowing_sub_mul).
#[inline]
fn overflowing_sub_mul(self, y: $t, z: $t) -> ($t, bool) {
overflowing_sub_mul_unsigned(self, y, z)
}
}
impl OverflowingSubMulAssign<$t> for $t {
/// Subtracts a number by the product of two other numbers, in place.
///
/// Returns a boolean indicating whether an arithmetic overflow would occur. If an
/// overflow would have occurred, then the wrapped value is assigned.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::overflowing_sub_mul#overflowing_sub_mul_assign).
#[inline]
fn overflowing_sub_mul_assign(&mut self, y: $t, z: $t) -> bool {
let (product, overflow) = y.overflowing_mul(z);
self.overflowing_sub_assign(product) | overflow
}
}
};
}
apply_to_unsigneds!(impl_overflowing_sub_mul_unsigned);
fn overflowing_sub_mul<U: PrimitiveUnsigned, S: PrimitiveSigned + UnsignedAbs<Output = U>>(
x: S,
y: S,
z: S,
) -> (S, bool) {
if y == S::ZERO || z == S::ZERO {
return (x, false);
}
let x_sign = x >= S::ZERO;
if x_sign == ((y >= S::ZERO) != (z >= S::ZERO)) {
let (product, overflow_1) = y.overflowing_mul(z);
let (result, overflow_2) = x.overflowing_sub(product);
(result, overflow_1 | overflow_2)
} else {
let result = x.wrapping_sub(y.wrapping_mul(z));
let overflow = {
let x = x.unsigned_abs();
match y.unsigned_abs().checked_mul(z.unsigned_abs()) {
Some(product) => {
x < product
&& if x_sign {
!x.wrapping_sub(product).get_highest_bit()
} else {
product.wrapping_sub(x).get_highest_bit()
}
}
None => true,
}
};
(result, overflow)
}
}
macro_rules! impl_overflowing_sub_mul_signed {
($t:ident) => {
impl OverflowingSubMul<$t> for $t {
type Output = $t;
/// Subtracts a number by the product of two other numbers.
///
/// Returns a tuple containing the result and a boolean indicating whether an arithmetic
/// overflow occurred. If an overflow occurred, then the wrapped value is returned.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::overflowing_sub_mul#overflowing_sub_mul).
#[inline]
fn overflowing_sub_mul(self, y: $t, z: $t) -> ($t, bool) {
overflowing_sub_mul(self, y, z)
}
}
impl OverflowingSubMulAssign<$t> for $t {
/// Subtracts a number by the product of two other numbers, in place.
///
/// Returns a boolean indicating whether an arithmetic overflow would occur. If an
/// overflow would have occurred, then the wrapped value is assigned.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::overflowing_sub_mul#overflowing_sub_mul_assign).
#[inline]
fn overflowing_sub_mul_assign(&mut self, y: $t, z: $t) -> bool {
let overflow;
(*self, overflow) = self.overflowing_sub_mul(y, z);
overflow
}
}
};
}
apply_to_signeds!(impl_overflowing_sub_mul_signed);