1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{CheckedPrimorial, Primorial};
use crate::num::basic::integers::PrimitiveInt;
use crate::num::conversion::traits::WrappingFrom;
const PRIMORIALS_U8: [u8; 5] = [1, 2, 6, 30, 210];
const PRIMORIALS_U16: [u16; 7] = [1, 2, 6, 30, 210, 2310, 30030];
const PRIMORIALS_U32: [u32; 10] = [1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870];
const PRIMORIALS_U64: [u64; 16] = [
1,
2,
6,
30,
210,
2310,
30030,
510510,
9699690,
223092870,
6469693230,
200560490130,
7420738134810,
304250263527210,
13082761331670030,
614889782588491410,
];
const PRIMORIALS_U128: [u128; 27] = [
1,
2,
6,
30,
210,
2310,
30030,
510510,
9699690,
223092870,
6469693230,
200560490130,
7420738134810,
304250263527210,
13082761331670030,
614889782588491410,
32589158477190044730,
1922760350154212639070,
117288381359406970983270,
7858321551080267055879090,
557940830126698960967415390,
40729680599249024150621323470,
3217644767340672907899084554130,
267064515689275851355624017992790,
23768741896345550770650537601358310,
2305567963945518424753102147331756070,
232862364358497360900063316880507363070,
];
const PRIMORIAL_PRIMES_U8: [u64; 5] = [2, 3, 5, 7, 11];
const PRIMORIAL_PRIMES_U16: [u64; 7] = [2, 3, 5, 7, 11, 13, 17];
const PRIMORIAL_PRIMES_U32: [u64; 10] = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29];
const PRIMORIAL_PRIMES_U64: [u64; 16] =
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53];
const PRIMORIAL_PRIMES_U128: [u64; 27] = [
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103,
];
macro_rules! impl_primorials_a {
($t:ident, $ps:ident, $pps:ident) => {
impl CheckedPrimorial for $t {
/// Computes the primorial of a number: the product of all primes less than or equal to
/// it.
///
/// The
/// [`checked_product_of_first_n_primes`](CheckedPrimorial::checked_product_of_first_n_primes)
/// function is similar; it computes the primorial of the $n$th prime.
///
/// If the input is too large, the function returns `None`.
///
/// $$
/// f(n) = \\begin{cases}
/// \operatorname{Some}(n\\#) & \text{if} \\quad n\\# < 2^W, \\\\
/// \operatorname{None} & \text{if} \\quad n\\# \geq 2^W,
/// \\end{cases}
/// $$
/// where $W$ is `Self::WIDTH`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::primorial#checked_primorial).
#[inline]
fn checked_primorial(n: u64) -> Option<$t> {
let i = match $pps.binary_search(&n) {
Ok(i) => i + 1,
Err(i) => i,
};
$ps.get(i).copied()
}
/// Computes the product of the first $n$ primes.
///
/// The [`checked_primorial`](CheckedPrimorial::checked_primorial) function is similar;
/// it computes the product of all primes less than or equal to $n$.
///
/// If the input is too large, the function returns `None`.
///
/// $$
/// f(n) = \\begin{cases}
/// \operatorname{Some}(p_n\\#) & \text{if} \\quad p_n\\# < 2^W, \\\\
/// \operatorname{None} & \text{if} \\quad p_n\\# \geq 2^W,
/// \\end{cases}
/// $$
/// where $W$ is `Self::WIDTH`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::primorial#checked_product_of_first_n_primes).
#[inline]
fn checked_product_of_first_n_primes(n: u64) -> Option<$t> {
$ps.get(usize::try_from(n).ok()?).copied()
}
}
};
}
impl_primorials_a!(u8, PRIMORIALS_U8, PRIMORIAL_PRIMES_U8);
impl_primorials_a!(u16, PRIMORIALS_U16, PRIMORIAL_PRIMES_U16);
impl_primorials_a!(u32, PRIMORIALS_U32, PRIMORIAL_PRIMES_U32);
impl_primorials_a!(u64, PRIMORIALS_U64, PRIMORIAL_PRIMES_U64);
impl_primorials_a!(u128, PRIMORIALS_U128, PRIMORIAL_PRIMES_U128);
impl CheckedPrimorial for usize {
/// Computes the primorial of a [`usize`]: the product of all primes less than or equal to it.
///
/// The
/// [`checked_product_of_first_n_primes`](CheckedPrimorial::checked_product_of_first_n_primes)
/// function is similar; it computes the primorial of the $n$th prime.
///
/// If the input is too large, the function returns `None`.
///
/// $$
/// f(n) = \\begin{cases}
/// \operatorname{Some}(n\\#) & \text{if} \\quad n\\# < 2^W, \\\\
/// \operatorname{None} & \text{if} \\quad n\\# \geq 2^W,
/// \\end{cases}
/// $$
/// where $W$ is `usize::WIDTH`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::primorial#checked_primorial).
#[inline]
fn checked_primorial(n: u64) -> Option<usize> {
match usize::WIDTH {
u32::WIDTH => u32::checked_primorial(n).map(usize::wrapping_from),
u64::WIDTH => u64::checked_primorial(n).map(usize::wrapping_from),
_ => panic!("Unexpected usize width: {}", usize::WIDTH),
}
}
/// Computes the product of the first $n$ primes.
///
/// The [`checked_primorial`](CheckedPrimorial::checked_primorial) function is similar; it
/// computes the product of all primes less than or equal to $n$.
///
/// If the input is too large, the function returns `None`.
///
/// $$
/// f(n) = \\begin{cases}
/// \operatorname{Some}(p_n\\#) & \text{if} \\quad p_n\\# < 2^W, \\\\
/// \operatorname{None} & \text{if} \\quad p_n\\# \geq 2^W,
/// \\end{cases}
/// $$
/// where $W$ is `usize::WIDTH`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::primorial#checked_product_of_first_n_primes).
#[inline]
fn checked_product_of_first_n_primes(n: u64) -> Option<usize> {
match usize::WIDTH {
u32::WIDTH => u32::checked_product_of_first_n_primes(n).map(usize::wrapping_from),
u64::WIDTH => u64::checked_product_of_first_n_primes(n).map(usize::wrapping_from),
_ => panic!("Unexpected usize width: {}", usize::WIDTH),
}
}
}
macro_rules! impl_primorials_b {
($t:ident) => {
impl Primorial for $t {
/// Computes the primorial of a number: the product of all primes less than or equal to
/// it.
///
/// The [`product_of_first_n_primes`](Primorial::product_of_first_n_primes) function is
/// similar; it computes the primorial of the $n$th prime.
///
/// If the input is too large, the function panics. For a function that returns `None`
/// instead, try [`checked_primorial`](CheckedPrimorial::checked_primorial).
///
/// $$
/// f(n) = n\\# = \prod_{p \leq n \atop p \\ \\text {prime}} p.
/// $$
///
/// $n\\# = O(e^{(1+o(1))n})$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if the output is too large to be represented.
///
/// # Examples
/// See [here](super::primorial#primorial).
#[inline]
fn primorial(n: u64) -> $t {
$t::checked_primorial(n).unwrap()
}
/// Computes the product of the first $n$ primes.
///
/// The [`primorial`](Primorial::primorial) function is similar; it computes the product
/// of all primes less than or equal to $n$.
///
/// If the input is too large, the function panics. For a function that returns `None`
/// instead, try
/// [`checked_product_of_first_n_primes`](CheckedPrimorial::checked_product_of_first_n_primes).
///
/// $$
/// f(n) = p_n\\# = \prod_{k=1}^n p_n,
/// $$
/// where $p_n$ is the $n$th prime number.
///
/// $p_n\\# = O\left ( \left ( \frac{1}{e}k\log k\left ( \frac{\log k}{e^2}k \right
/// )^{1/\log k} \right )^k \omega(1)\right )$.
///
/// This asymptotic approximation is due to [Bart
/// Michels](https://math.stackexchange.com/a/1594930).
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if the output is too large to be represented.
///
/// # Examples
/// See [here](super::primorial#product_of_first_n_primes).
#[inline]
fn product_of_first_n_primes(n: u64) -> $t {
$t::checked_product_of_first_n_primes(n).unwrap()
}
}
};
}
apply_to_unsigneds!(impl_primorials_b);