1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{RoundToMultipleOfPowerOf2, RoundToMultipleOfPowerOf2Assign};
use crate::num::basic::integers::PrimitiveInt;
use crate::rounding_modes::RoundingMode;
use core::cmp::Ordering;
fn round_to_multiple_of_power_of_2<T: PrimitiveInt>(
x: T,
pow: u64,
rm: RoundingMode,
) -> (T, Ordering) {
let (s, o) = x.shr_round(pow, rm);
(s.arithmetic_checked_shl(pow).unwrap(), o)
}
macro_rules! impl_round_to_multiple_of_power_of_2 {
($t:ident) => {
impl RoundToMultipleOfPowerOf2<u64> for $t {
type Output = $t;
/// Rounds a number to a multiple of $2^k$ according to a specified rounding mode. An
/// [`Ordering`] is also returned, indicating whether the returned value is less than,
/// equal to, or greater than the original value.
///
/// The only rounding mode that is guaranteed to return without a panic is `Down`.
///
/// Let $q = \frac{x}{2^k}$:
///
/// $f(x, k, \mathrm{Down}) = 2^k \operatorname{sgn}(q) \lfloor |q| \rfloor.$
///
/// $f(x, k, \mathrm{Up}) = 2^k \operatorname{sgn}(q) \lceil |q| \rceil.$
///
/// $f(x, k, \mathrm{Floor}) = 2^k \lfloor q \rfloor.$
///
/// $f(x, k, \mathrm{Ceiling}) = 2^k \lceil q \rceil.$
///
/// $$
/// f(x, k, \mathrm{Nearest}) = \begin{cases}
/// 2^k \lfloor q \rfloor & \text{if} \\quad
/// q - \lfloor q \rfloor < \frac{1}{2} \\\\
/// 2^k \lceil q \rceil & \text{if} \\quad q - \lfloor q \rfloor > \frac{1}{2} \\\\
/// 2^k \lfloor q \rfloor &
/// \text{if} \\quad q - \lfloor q \rfloor =
/// \frac{1}{2} \\ \text{and} \\ \lfloor q \rfloor
/// \\ \text{is even} \\\\
/// 2^k \lceil q \rceil &
/// \text{if} \\quad q - \lfloor q \rfloor =
/// \frac{1}{2} \\ \text{and} \\ \lfloor q \rfloor \\ \text{is odd.}
/// \end{cases}
/// $$
///
/// $f(x, k, \mathrm{Exact}) = 2^k q$, but panics if $q \notin \Z$.
///
/// The following two expressions are equivalent:
/// - `x.round_to_multiple_of_power_of_2(pow, Exact)`
/// - `{ assert!(x.divisible_by_power_of_2(pow)); x }`
///
/// but the latter should be used as it is clearer and more efficient.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// - If `rm` is `Exact`, but `self` is not a multiple of the power of 2.
/// - If `rm` is `Floor`, but `self` is negative with a too-large absolute value to
/// round to the next lowest multiple.
/// - If `rm` is `Ceiling`, but `self` is too large to round to the next highest
/// multiple.
/// - If `rm` is `Up`, but `self` has too large an absolute value to round to the next
/// multiple with a greater absolute value.
/// - If `rm` is `Nearest`, but the nearest multiple is outside the representable range.
///
/// # Examples
/// See [here](super::round_to_multiple_of_power_of_2#round_to_multiple_of_power_of_2).
#[inline]
fn round_to_multiple_of_power_of_2(self, pow: u64, rm: RoundingMode) -> ($t, Ordering) {
round_to_multiple_of_power_of_2(self, pow, rm)
}
}
impl RoundToMultipleOfPowerOf2Assign<u64> for $t {
/// Rounds a number to a multiple of $2^k$ in place, according to a specified rounding
/// mode. An [`Ordering`] is returned, indicating whether the returned value is less
/// than, equal to, or greater than the original value.
///
/// The only rounding mode that is guaranteed to return without a panic is `Down`.
///
/// See the [`RoundToMultipleOfPowerOf2`] documentation for details.
///
/// The following two expressions are equivalent:
/// - `x.round_to_multiple_of_power_of_2_assign(pow, Exact);`
/// - `assert!(x.divisible_by_power_of_2(pow));`
///
/// but the latter should be used as it is clearer and more efficient.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// - If `rm` is `Exact`, but `self` is not a multiple of the power of 2.
/// - If `rm` is `Floor`, but `self` is negative with a too-large absolute value to
/// round to the next lowest multiple.
/// - If `rm` is `Ceiling`, but `self` is too large to round to the next highest
/// multiple.
/// - If `rm` is `Up`, but `self` has too large an absolute value to round to the next
/// multiple with a greater absolute value.
/// - If `rm` is `Nearest`, but the nearest multiple is outside the representable range.
///
/// # Examples
/// See
/// [here](super::round_to_multiple_of_power_of_2#round_to_multiple_of_power_of_2_assign).
#[inline]
fn round_to_multiple_of_power_of_2_assign(
&mut self,
pow: u64,
rm: RoundingMode,
) -> Ordering {
let o;
(*self, o) = self.round_to_multiple_of_power_of_2(pow, rm);
o
}
}
};
}
apply_to_primitive_ints!(impl_round_to_multiple_of_power_of_2);