1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{SaturatingAddMul, SaturatingAddMulAssign, UnsignedAbs};
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::WrappingFrom;
fn saturating_add_mul_unsigned<T: PrimitiveUnsigned>(x: T, y: T, z: T) -> T {
x.saturating_add(y.saturating_mul(z))
}
fn saturating_add_mul_assign_unsigned<T: PrimitiveUnsigned>(x: &mut T, y: T, z: T) {
x.saturating_add_assign(y.saturating_mul(z));
}
macro_rules! impl_saturating_add_mul_unsigned {
($t:ident) => {
impl SaturatingAddMul<$t> for $t {
type Output = $t;
/// Adds a number and the product of two other numbers, saturating at the numeric bounds
/// instead of overflowing.
///
/// $$
/// f(x, y, z) = \\begin{cases}
/// x + yz & \text{if} \\quad m \leq x + yz \leq M, \\\\
/// M & \text{if} \\quad x + yz > M, \\\\
/// m & \text{if} \\quad x + yz < m,
/// \\end{cases}
/// $$
/// where $m$ is `Self::MIN` and $M$ is `Self::MAX`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::saturating_add_mul#saturating_add_mul).
#[inline]
fn saturating_add_mul(self, y: $t, z: $t) -> $t {
saturating_add_mul_unsigned(self, y, z)
}
}
impl SaturatingAddMulAssign<$t> for $t {
/// Adds a number and the product of two other numbers in place, saturating at the
/// numeric bounds instead of overflowing.
///
/// $$
/// x \gets \\begin{cases}
/// x + yz & \text{if} \\quad m \leq x + yz \leq M, \\\\
/// M & \text{if} \\quad x + yz > M, \\\\
/// m & \text{if} \\quad x + yz < m,
/// \\end{cases}
/// $$
/// where $m$ is `Self::MIN` and $M$ is `Self::MAX`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::saturating_add#saturating_add_mul_assign).
#[inline]
fn saturating_add_mul_assign(&mut self, y: $t, z: $t) {
saturating_add_mul_assign_unsigned(self, y, z);
}
}
};
}
apply_to_unsigneds!(impl_saturating_add_mul_unsigned);
fn saturating_add_mul_signed<
U: PrimitiveUnsigned,
S: PrimitiveSigned + UnsignedAbs<Output = U> + WrappingFrom<U>,
>(
x: S,
y: S,
z: S,
) -> S {
if y == S::ZERO || z == S::ZERO {
return x;
}
let x_sign = x >= S::ZERO;
if x_sign == ((y >= S::ZERO) == (z >= S::ZERO)) {
x.saturating_add(y.saturating_mul(z))
} else {
let x = x.unsigned_abs();
let product = if let Some(product) = y.unsigned_abs().checked_mul(z.unsigned_abs()) {
product
} else {
return if x_sign { S::MIN } else { S::MAX };
};
let result = S::wrapping_from(if x_sign {
x.wrapping_sub(product)
} else {
product.wrapping_sub(x)
});
if x >= product || (x_sign == (result < S::ZERO)) {
result
} else if x_sign {
S::MIN
} else {
S::MAX
}
}
}
macro_rules! impl_saturating_add_mul_signed {
($t:ident) => {
impl SaturatingAddMul<$t> for $t {
type Output = $t;
/// Adds a number and the product of two other numbers, saturating at the numeric bounds
/// instead of overflowing.
///
/// $$
/// f(x, y, z) = \\begin{cases}
/// x + yz & \text{if} \\quad m \leq x + yz \leq M, \\\\
/// M & \text{if} \\quad x + yz > M, \\\\
/// m & \text{if} \\quad x + yz < m,
/// \\end{cases}
/// $$
/// where $m$ is `Self::MIN` and $M$ is `Self::MAX`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::saturating_add_mul#saturating_add_mul_assign).
#[inline]
fn saturating_add_mul(self, y: $t, z: $t) -> $t {
saturating_add_mul_signed(self, y, z)
}
}
impl SaturatingAddMulAssign<$t> for $t {
/// Adds a number and the product of two other numbers in place, saturating at the
/// numeric bounds instead of overflowing.
///
/// $$
/// x \gets \\begin{cases}
/// x + yz & \text{if} \\quad m \leq x + yz \leq M, \\\\
/// M & \text{if} \\quad x + yz > M, \\\\
/// m & \text{if} \\quad x + yz < m,
/// \\end{cases}
/// $$
/// where $m$ is `Self::MIN` and $M$ is `Self::MAX`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::saturating_add_mul#saturating_add_mul_assign).
#[inline]
fn saturating_add_mul_assign(&mut self, y: $t, z: $t) {
*self = self.saturating_add_mul(y, z);
}
}
};
}
apply_to_signeds!(impl_saturating_add_mul_signed);