1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::arithmetic::traits::{SaturatingAddMul, SaturatingAddMulAssign, UnsignedAbs};
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::WrappingFrom;

fn saturating_add_mul_unsigned<T: PrimitiveUnsigned>(x: T, y: T, z: T) -> T {
    x.saturating_add(y.saturating_mul(z))
}

fn saturating_add_mul_assign_unsigned<T: PrimitiveUnsigned>(x: &mut T, y: T, z: T) {
    x.saturating_add_assign(y.saturating_mul(z));
}

macro_rules! impl_saturating_add_mul_unsigned {
    ($t:ident) => {
        impl SaturatingAddMul<$t> for $t {
            type Output = $t;

            /// Adds a number and the product of two other numbers, saturating at the numeric bounds
            /// instead of overflowing.
            ///
            /// $$
            /// f(x, y, z) = \\begin{cases}
            ///     x + yz & \text{if} \\quad m \leq x + yz \leq M, \\\\
            ///     M & \text{if} \\quad x + yz > M, \\\\
            ///     m & \text{if} \\quad x + yz < m,
            /// \\end{cases}
            /// $$
            /// where $m$ is `Self::MIN` and $M$ is `Self::MAX`.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::saturating_add_mul#saturating_add_mul).
            #[inline]
            fn saturating_add_mul(self, y: $t, z: $t) -> $t {
                saturating_add_mul_unsigned(self, y, z)
            }
        }

        impl SaturatingAddMulAssign<$t> for $t {
            /// Adds a number and the product of two other numbers in place, saturating at the
            /// numeric bounds instead of overflowing.
            ///
            /// $$
            /// x \gets \\begin{cases}
            ///     x + yz & \text{if} \\quad m \leq x + yz \leq M, \\\\
            ///     M & \text{if} \\quad x + yz > M, \\\\
            ///     m & \text{if} \\quad x + yz < m,
            /// \\end{cases}
            /// $$
            /// where $m$ is `Self::MIN` and $M$ is `Self::MAX`.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::saturating_add#saturating_add_mul_assign).
            #[inline]
            fn saturating_add_mul_assign(&mut self, y: $t, z: $t) {
                saturating_add_mul_assign_unsigned(self, y, z);
            }
        }
    };
}
apply_to_unsigneds!(impl_saturating_add_mul_unsigned);

fn saturating_add_mul_signed<
    U: PrimitiveUnsigned,
    S: PrimitiveSigned + UnsignedAbs<Output = U> + WrappingFrom<U>,
>(
    x: S,
    y: S,
    z: S,
) -> S {
    if y == S::ZERO || z == S::ZERO {
        return x;
    }
    let x_sign = x >= S::ZERO;
    if x_sign == ((y >= S::ZERO) == (z >= S::ZERO)) {
        x.saturating_add(y.saturating_mul(z))
    } else {
        let x = x.unsigned_abs();
        let product = if let Some(product) = y.unsigned_abs().checked_mul(z.unsigned_abs()) {
            product
        } else {
            return if x_sign { S::MIN } else { S::MAX };
        };
        let result = S::wrapping_from(if x_sign {
            x.wrapping_sub(product)
        } else {
            product.wrapping_sub(x)
        });
        if x >= product || (x_sign == (result < S::ZERO)) {
            result
        } else if x_sign {
            S::MIN
        } else {
            S::MAX
        }
    }
}

macro_rules! impl_saturating_add_mul_signed {
    ($t:ident) => {
        impl SaturatingAddMul<$t> for $t {
            type Output = $t;

            /// Adds a number and the product of two other numbers, saturating at the numeric bounds
            /// instead of overflowing.
            ///
            /// $$
            /// f(x, y, z) = \\begin{cases}
            ///     x + yz & \text{if} \\quad m \leq x + yz \leq M, \\\\
            ///     M & \text{if} \\quad x + yz > M, \\\\
            ///     m & \text{if} \\quad x + yz < m,
            /// \\end{cases}
            /// $$
            /// where $m$ is `Self::MIN` and $M$ is `Self::MAX`.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::saturating_add_mul#saturating_add_mul_assign).
            #[inline]
            fn saturating_add_mul(self, y: $t, z: $t) -> $t {
                saturating_add_mul_signed(self, y, z)
            }
        }

        impl SaturatingAddMulAssign<$t> for $t {
            /// Adds a number and the product of two other numbers in place, saturating at the
            /// numeric bounds instead of overflowing.
            ///
            /// $$
            /// x \gets \\begin{cases}
            ///     x + yz & \text{if} \\quad m \leq x + yz \leq M, \\\\
            ///     M & \text{if} \\quad x + yz > M, \\\\
            ///     m & \text{if} \\quad x + yz < m,
            /// \\end{cases}
            /// $$
            /// where $m$ is `Self::MIN` and $M$ is `Self::MAX`.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::saturating_add_mul#saturating_add_mul_assign).
            #[inline]
            fn saturating_add_mul_assign(&mut self, y: $t, z: $t) {
                *self = self.saturating_add_mul(y, z);
            }
        }
    };
}
apply_to_signeds!(impl_saturating_add_mul_signed);