1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{
SaturatingMulAssign, SaturatingSquare, SaturatingSquareAssign,
};
macro_rules! impl_saturating_square {
($t:ident) => {
impl SaturatingSquare for $t {
type Output = $t;
/// Squares a number, saturating at the numeric bounds instead of overflowing.
///
/// $$
/// f(x) = \\begin{cases}
/// x^2 & \text{if} \\quad x^2 \leq M, \\\\
/// M & \text{if} \\quad x^2 > M,
/// \\end{cases}
/// $$
/// where $M$ is `Self::MAX`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::saturating_square#saturating_square).
#[inline]
fn saturating_square(self) -> $t {
self.saturating_mul(self)
}
}
impl SaturatingSquareAssign for $t {
/// Squares a number in place, saturating at the numeric bounds instead of overflowing.
///
/// $$
/// x \gets \\begin{cases}
/// x^2 & \text{if} \\quad x^2 \leq M, \\\\
/// M & \text{if} \\quad x^2 > M,
/// \\end{cases}
/// $$
/// where $M$ is `Self::MAX`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::saturating_square#saturating_square_assign).
#[inline]
fn saturating_square_assign(&mut self) {
self.saturating_mul_assign(*self);
}
}
};
}
apply_to_primitive_ints!(impl_saturating_square);