1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::basic::traits::Two;
use crate::rounding_modes::RoundingMode;
use core::cmp::Ordering;

/// Takes the absolute value of a number. Assumes that the number has a representable absolute
/// number.
pub trait Abs {
    type Output;

    fn abs(self) -> Self::Output;
}

/// Replaces a number with its absolute value. Assumes that the number has a representable absolute
/// number.
pub trait AbsAssign {
    fn abs_assign(&mut self);
}

/// Takes the absolute value of a number and converts to the unsigned equivalent.
pub trait UnsignedAbs {
    type Output;

    fn unsigned_abs(self) -> Self::Output;
}

/// Subtracts two numbers and takes the absolute value of the difference.
pub trait AbsDiff<RHS = Self> {
    type Output;

    fn abs_diff(self, other: RHS) -> Self::Output;
}

/// Replaces a number with the absolute value of its difference with another number.
pub trait AbsDiffAssign<RHS = Self> {
    fn abs_diff_assign(&mut self, other: RHS);
}

/// Adds a number and the product of two other numbers.
pub trait AddMul<Y = Self, Z = Self> {
    type Output;

    fn add_mul(self, y: Y, z: Z) -> Self::Output;
}

/// Adds a number and the product of two other numbers, in place.
pub trait AddMulAssign<Y = Self, Z = Self> {
    fn add_mul_assign(&mut self, y: Y, z: Z);
}

/// Left-shifts a number (multiplies it by a power of 2), returning `None` if the result is not
/// representable.
pub trait ArithmeticCheckedShl<RHS> {
    type Output;

    fn arithmetic_checked_shl(self, other: RHS) -> Option<Self::Output>;
}

/// Right-shifts a number (divides it by a power of 2), returning `None` if the result is not
/// representable.
pub trait ArithmeticCheckedShr<RHS> {
    type Output;

    fn arithmetic_checked_shr(self, other: RHS) -> Option<Self::Output>;
}

pub trait BinomialCoefficient<T = Self> {
    fn binomial_coefficient(n: T, k: T) -> Self;
}

pub trait CheckedBinomialCoefficient<T = Self>: Sized {
    fn checked_binomial_coefficient(n: T, k: T) -> Option<Self>;
}

/// Takes the ceiling of a number.
pub trait Ceiling {
    type Output;

    fn ceiling(self) -> Self::Output;
}

/// Replaces a number with its ceiling.
pub trait CeilingAssign {
    fn ceiling_assign(&mut self);
}

/// Takes the absolute valie of a number, returning `None` if the result is not representable.
pub trait CheckedAbs {
    type Output;

    fn checked_abs(self) -> Option<Self::Output>;
}

/// Adds two numbers, returning `None` if the result is not representable.
pub trait CheckedAdd<RHS = Self> {
    type Output;

    fn checked_add(self, other: RHS) -> Option<Self::Output>;
}

/// Adds a number and the product of two other numbers, returning `None` if the result is not
/// representable.
pub trait CheckedAddMul<Y = Self, Z = Self> {
    type Output;

    fn checked_add_mul(self, y: Y, z: Z) -> Option<Self::Output>;
}

/// Divides two numbers, returning `None` if the result is not representable.
pub trait CheckedDiv<RHS = Self> {
    type Output;

    fn checked_div(self, other: RHS) -> Option<Self::Output>;
}

/// Multiplies two numbers, returning `None` if the result is not representable.
pub trait CheckedMul<RHS = Self> {
    type Output;

    fn checked_mul(self, other: RHS) -> Option<Self::Output>;
}

/// Negates a number, returning `None` if the result is not representable.
pub trait CheckedNeg {
    type Output;

    fn checked_neg(self) -> Option<Self::Output>;
}

/// Finds the smallest integer power of 2 greater than or equal to a number, returning `None` if the
/// result is not representable.
pub trait CheckedNextPowerOf2 {
    type Output;

    fn checked_next_power_of_2(self) -> Option<Self::Output>;
}

/// Raises a number to a power, returning `None` if the result is not representable.
pub trait CheckedPow<RHS> {
    type Output;

    fn checked_pow(self, exp: RHS) -> Option<Self::Output>;
}

/// Squares a number, returning `None` if the result is not representable.
pub trait CheckedSquare {
    type Output;

    fn checked_square(self) -> Option<Self::Output>;
}

/// Subtracts two numbers, returning `None` if the result is not representable.
pub trait CheckedSub<RHS = Self> {
    type Output;

    fn checked_sub(self, other: RHS) -> Option<Self::Output>;
}

/// Subtracts a number by the product of two other numbers, returning `None` if the result is not
/// representable.
pub trait CheckedSubMul<Y = Self, Z = Self> {
    type Output;

    fn checked_sub_mul(self, y: Y, z: Z) -> Option<Self::Output>;
}

/// Determines whether two numbers are coprime.
pub trait CoprimeWith<RHS = Self> {
    fn coprime_with(self, other: RHS) -> bool;
}

/// Divides two numbers, assuming the first exactly divides the second.
///
/// If it doesn't, the `div_exact` function may panic or return a meaningless result.
pub trait DivExact<RHS = Self> {
    type Output;

    fn div_exact(self, other: RHS) -> Self::Output;
}

/// Divides a number by another number in place, assuming the first exactly divides the second.
///
/// If it doesn't, this function may panic or assign a meaningless number to the first number.
pub trait DivExactAssign<RHS = Self> {
    fn div_exact_assign(&mut self, other: RHS);
}

/// Divides two numbers, returning the quotient and remainder. The quotient is rounded towards
/// negative infinity, and the remainder has the same sign as the divisor (second input).
///
/// The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
pub trait DivMod<RHS = Self> {
    type DivOutput;
    type ModOutput;

    fn div_mod(self, other: RHS) -> (Self::DivOutput, Self::ModOutput);
}

/// Divides a number by another number in place, returning the remainder. The quotient is rounded
/// towards negative infinity, and the remainder has the same sign as the divisor (second input).
///
/// The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
pub trait DivAssignMod<RHS = Self> {
    type ModOutput;

    fn div_assign_mod(&mut self, other: RHS) -> Self::ModOutput;
}

/// Divides two numbers, returning the quotient and remainder. The quotient is rounded towards zero,
/// and the remainder has the same sign as the dividend (first input).
///
/// The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
pub trait DivRem<RHS = Self> {
    type DivOutput;
    type RemOutput;

    fn div_rem(self, other: RHS) -> (Self::DivOutput, Self::RemOutput);
}

/// Divides a number by another number in place, returning the remainder. The quotient is rounded
/// towards zero, and the remainder has the same sign as the dividend (first input).
///
/// The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
pub trait DivAssignRem<RHS = Self> {
    type RemOutput;

    fn div_assign_rem(&mut self, other: RHS) -> Self::RemOutput;
}

/// Divides a number by another number, returning the ceiling of the quotient and the remainder of
/// the negative of the first number divided by the second.
///
/// The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.
pub trait CeilingDivNegMod<RHS = Self> {
    type DivOutput;
    type ModOutput;

    fn ceiling_div_neg_mod(self, other: RHS) -> (Self::DivOutput, Self::ModOutput);
}

/// Divides a number by another number in place, taking the ceiling of the quotient and returning
/// the remainder of the negative of the first number divided by the second.
///
/// The quotient and remainder satisfy $x = qy - r$ and $0 \leq r < y$.
pub trait CeilingDivAssignNegMod<RHS = Self> {
    type ModOutput;

    fn ceiling_div_assign_neg_mod(&mut self, other: RHS) -> Self::ModOutput;
}

/// Divides a number by another number, returning the quotient and remainder. The quotient is
/// rounded towards positive infinity and the remainder has the opposite sign as the divisor (second
/// input).
///
/// The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
pub trait CeilingDivMod<RHS = Self> {
    type DivOutput;
    type ModOutput;

    fn ceiling_div_mod(self, other: RHS) -> (Self::DivOutput, Self::ModOutput);
}

/// Divides a number by another number in place, taking the quotient and returning the remainder.
/// The quotient is rounded towards positive infinity and the remainder has the opposite sign of the
/// divisor (second input).
///
/// The quotient and remainder satisfy $x = qy + r$ and $0 \leq |r| < |y|$.
pub trait CeilingDivAssignMod<RHS = Self> {
    type ModOutput;

    fn ceiling_div_assign_mod(&mut self, other: RHS) -> Self::ModOutput;
}

/// Divides a number by another number and rounds according to a specified rounding mode. An
/// [`Ordering`] is also returned, indicating whether the returned value is less than, equal to, or
/// greater than the exact value.
pub trait DivRound<RHS = Self> {
    type Output;

    fn div_round(self, other: RHS, rm: RoundingMode) -> (Self::Output, Ordering);
}

/// Divides a number by another number in place and rounds according to a specified rounding mode.
/// An [`Ordering`] is returned, indicating whether the assigned value is less than, equal to, or
/// greater than the exact value.
pub trait DivRoundAssign<RHS = Self> {
    fn div_round_assign(&mut self, other: RHS, rm: RoundingMode) -> Ordering;
}

/// Determines whether a number is divisible by $2^k$.
pub trait DivisibleByPowerOf2 {
    fn divisible_by_power_of_2(self, pow: u64) -> bool;
}

/// Determines whether a number is divisible by another number.
pub trait DivisibleBy<RHS = Self> {
    fn divisible_by(self, other: RHS) -> bool;
}

/// Determines whether a number is equivalent to another number modulo $2^k$.
pub trait EqModPowerOf2<RHS = Self> {
    fn eq_mod_power_of_2(self, other: RHS, pow: u64) -> bool;
}

/// Determines whether a number is equivalent to another number modulo $m$.
pub trait EqMod<RHS = Self, M = Self> {
    fn eq_mod(self, other: RHS, m: M) -> bool;
}

/// Computes the GCD (greatest common divisor) of two numbers $a$ and $b$, and also the coefficients
/// $x$ and $y$ in Bézout's identity $ax+by=\gcd(a,b)$.
///
/// The are infinitely many $x$, $y$ that satisfy the identity, so the full specification is more
/// detailed:
///
/// - $f(0, 0) = (0, 0, 0)$.
/// - $f(a, ak) = (a, 1, 0)$ if $a > 0$ and $k \neq 1$.
/// - $f(a, ak) = (-a, -1, 0)$ if $a < 0$ and $k \neq 1$.
/// - $f(bk, b) = (b, 0, 1)$ if $b > 0$.
/// - $f(bk, b) = (-b, 0, -1)$ if $b < 0$.
/// - $f(a, b) = (g, x, y)$ if $a \neq 0$ and $b \neq 0$ and $\gcd(a, b) \neq \min(|a|, |b|)$, where
///   $g = \gcd(a, b) \geq 0$, $ax + by = g$, $x \leq \lfloor b/g \rfloor$, and $y \leq \lfloor a/g
///   \rfloor$.
pub trait ExtendedGcd<RHS = Self> {
    type Gcd;
    type Cofactor;

    fn extended_gcd(self, other: RHS) -> (Self::Gcd, Self::Cofactor, Self::Cofactor);
}

/// Computes the factorial of a `u64`.
pub trait Factorial {
    fn factorial(n: u64) -> Self;
}

/// Computes the factorial of a `u64`, returning `None` if the result is too large to be
/// represented.
pub trait CheckedFactorial: Sized {
    fn checked_factorial(n: u64) -> Option<Self>;
}

/// Computes the double factorial of a `u64`. The double factorial of a non-negative integer is the
/// product of all the positive integers that are less than or equal to it and have the same parity
/// as it.
pub trait DoubleFactorial {
    fn double_factorial(n: u64) -> Self;
}

/// Computes the double factorial of a `u64`, returning `None` if the result is too large to be
/// represented. The double factorial of a non-negative integer is the product of all the positive
/// integers that are less than or equal to it and have the same parity as it.
pub trait CheckedDoubleFactorial: Sized {
    fn checked_double_factorial(n: u64) -> Option<Self>;
}

/// Computes the $m$-multifactorial of a `u64`. The $m$-multifactorial of a non-negative integer $n$
/// is the product of all integers $k$ such that $0<k\leq n$ and $k\equiv n \pmod m$.
pub trait Multifactorial {
    fn multifactorial(n: u64, m: u64) -> Self;
}

/// Computes the $m$-multifactorial of a `u64`, returning `None` if the result is too large to be
/// represented. The $m$-multifactorial of a non-negative integer $n$ is the product of all integers
/// $k$ such that $0<k\leq n$ and $k\equiv n \pmod m$.
pub trait CheckedMultifactorial: Sized {
    fn checked_multifactorial(n: u64, m: u64) -> Option<Self>;
}

/// Computes the subfactorial of a `u64`. The subfactorial of a non-negative integer $n$ counts the
/// number of derangements of $n$ elements, which are the permutations in which no element is fixed.
pub trait Subfactorial {
    fn subfactorial(n: u64) -> Self;
}

/// Computes the subfactorial of a `u64`, returning `None` if the result is too large to be
/// represented. The subfactorial of a non-negative integer $n$ counts the number of derangements of
/// $n$ elements, which are the permutations in which no element is fixed.
pub trait CheckedSubfactorial: Sized {
    fn checked_subfactorial(n: u64) -> Option<Self>;
}

/// Takes the floor of a number.
pub trait Floor {
    type Output;

    fn floor(self) -> Self::Output;
}

/// Replaces a number with its floor.
pub trait FloorAssign {
    fn floor_assign(&mut self);
}

/// Calculates the GCD (greatest common divisor) of two numbers.
pub trait Gcd<RHS = Self> {
    type Output;

    fn gcd(self, other: RHS) -> Self::Output;
}

/// Replaces a number with the GCD (greatest common divisor) of it and another number.
pub trait GcdAssign<RHS = Self> {
    fn gcd_assign(&mut self, other: RHS);
}

/// Determines whether a number is an integer power of 2.
pub trait IsPowerOf2 {
    fn is_power_of_2(&self) -> bool;
}

/// Calculates the LCM (least common multiple) of two numbers.
pub trait Lcm<RHS = Self> {
    type Output;

    fn lcm(self, other: RHS) -> Self::Output;
}

/// Replaces a number with the LCM (least common multiple) of it and another number.
pub trait LcmAssign<RHS = Self> {
    fn lcm_assign(&mut self, other: RHS);
}

/// Takes the natural logarithm of a number.
pub trait Ln {
    type Output;

    fn ln(self) -> Self::Output;
}

/// Calculates the LCM (least common multiple) of two numbers, returning `None` if the result is not
/// representable.
pub trait CheckedLcm<RHS = Self> {
    type Output;

    fn checked_lcm(self, other: RHS) -> Option<Self::Output>;
}

/// Calculates the Legendre symbol of two numbers. Typically the implementations will be identical
/// to those of [`JacobiSymbol`].
pub trait LegendreSymbol<RHS = Self> {
    fn legendre_symbol(self, other: RHS) -> i8;
}

/// Calculates the Jacobi symbol of two numbers.
pub trait JacobiSymbol<RHS = Self> {
    fn jacobi_symbol(self, other: RHS) -> i8;
}

/// Calculates the Kronecker symbol of two numbers.
pub trait KroneckerSymbol<RHS = Self> {
    fn kronecker_symbol(self, other: RHS) -> i8;
}

/// Calculates the base-$b$ logarithm of a number, or returns `None` if the number is not a perfect
/// power of $b$.
pub trait CheckedLogBase<B = Self> {
    type Output;

    fn checked_log_base(self, base: B) -> Option<Self::Output>;
}

/// Calculates the floor of the base-$b$ logarithm of a number.
pub trait FloorLogBase<B = Self> {
    type Output;

    fn floor_log_base(self, base: B) -> Self::Output;
}

/// Calculates the ceiling of the base-$b$ logarithm of a number.
pub trait CeilingLogBase<B = Self> {
    type Output;

    fn ceiling_log_base(self, base: B) -> Self::Output;
}

/// Calculates the base-2 logarithm of a number, or returns `None` if the number is not a perfect
/// power of 2.
pub trait CheckedLogBase2 {
    type Output;

    fn checked_log_base_2(self) -> Option<Self::Output>;
}

/// Calculates the floor of the base-2 logarithm of a number.
pub trait FloorLogBase2 {
    type Output;

    fn floor_log_base_2(self) -> Self::Output;
}

/// Calculates the ceiling of the base-2 logarithm of a number.
pub trait CeilingLogBase2 {
    type Output;

    fn ceiling_log_base_2(self) -> Self::Output;
}

/// Calculates the base-$2^k$ logarithm of a number, or returns `None` if the number is not a
/// perfect power of $2^k$.
pub trait CheckedLogBasePowerOf2<POW> {
    type Output;

    fn checked_log_base_power_of_2(self, pow: POW) -> Option<Self::Output>;
}

/// Calculates the floor of the base-$2^k$ logarithm of a number.
pub trait FloorLogBasePowerOf2<POW> {
    type Output;

    fn floor_log_base_power_of_2(self, pow: POW) -> Self::Output;
}

/// Calculates the ceiling of the base-$2^k$ logarithm of a number.
pub trait CeilingLogBasePowerOf2<POW> {
    type Output;

    fn ceiling_log_base_power_of_2(self, pow: POW) -> Self::Output;
}

/// Adds two numbers modulo a third number $m$. The inputs must be already reduced modulo $m$.
pub trait ModAdd<RHS = Self, M = Self> {
    type Output;

    fn mod_add(self, other: RHS, m: M) -> Self::Output;
}

/// Adds two numbers modulo a third number $m$, in place. The inputs must be already reduced modulo
/// $m$.
pub trait ModAddAssign<RHS = Self, M = Self> {
    fn mod_add_assign(&mut self, other: RHS, m: M);
}

/// Finds the multiplicative inverse of a number modulo another number $m$. The input must be
/// already reduced modulo $m$.
pub trait ModInverse<M = Self> {
    type Output;

    fn mod_inverse(self, m: M) -> Option<Self::Output>;
}

/// Checks whether a number is reduced modulo another number $m$.
pub trait ModIsReduced<M = Self> {
    fn mod_is_reduced(&self, m: &M) -> bool;
}

/// Multiplies two numbers modulo a third number $m$. The inputs must be already reduced modulo $m$.
pub trait ModMul<RHS = Self, M = Self> {
    type Output;

    fn mod_mul(self, other: RHS, m: M) -> Self::Output;
}

/// Multiplies two numbers modulo a third number $m$, in place. The inputs must be already reduced
/// modulo $m$.
pub trait ModMulAssign<RHS = Self, M = Self> {
    fn mod_mul_assign(&mut self, other: RHS, m: M);
}

/// Multiplies two numbers modulo a third number $m$. The inputs must be already reduced modulo $m$.
///
/// If multiple modular multiplications with the same modulus are necessary, it can be quicker to
/// precompute some piece of data and reuse it in the multiplication calls. This trait provides a
/// function for precomputing the data and a function for using it during multiplication.
pub trait ModMulPrecomputed<RHS = Self, M = Self> {
    type Output;
    type Data;

    /// Precomputes some data to use for modular multiplication.
    fn precompute_mod_mul_data(m: &M) -> Self::Data;

    fn mod_mul_precomputed(self, other: RHS, m: M, data: &Self::Data) -> Self::Output;
}

/// Multiplies two numbers modulo a third number $m$, in place.The inputs must be already reduced
/// modulo $m$.
///
/// If multiple modular multiplications with the same modulus are necessary, it can be quicker to
/// precompute some piece of data and reuse it in the multiplication calls. This trait provides a
/// function for using precomputed data during multiplication. For precomputing the data, use the
/// [`precompute_mod_mul_data`](ModMulPrecomputed::precompute_mod_mul_data) function in
/// [`ModMulPrecomputed`].
pub trait ModMulPrecomputedAssign<RHS = Self, M = Self>: ModMulPrecomputed<RHS, M> {
    fn mod_mul_precomputed_assign(&mut self, other: RHS, m: M, data: &Self::Data);
}

/// Negates a number modulo another number $m$. The input must be already reduced modulo $m$.
pub trait ModNeg<M = Self> {
    type Output;

    fn mod_neg(self, m: M) -> Self::Output;
}

/// Negates a number modulo another number $m$, in place. The input must be already reduced modulo
/// $m$.
pub trait ModNegAssign<M = Self> {
    fn mod_neg_assign(&mut self, m: M);
}

/// Divides a number by another number, returning just the remainder. The remainder has the same
/// sign as the divisor (second number).
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq
/// |r| < |y|$.
pub trait Mod<RHS = Self> {
    type Output;

    fn mod_op(self, other: RHS) -> Self::Output;
}

/// Divides a number by another number, replacing the first number by the remainder. The remainder
/// has the same sign as the divisor (second number).
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq
/// |r| < |y|$.
pub trait ModAssign<RHS = Self> {
    fn mod_assign(&mut self, other: RHS);
}

/// Divides the negative of a number by another number, returning the remainder.
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = qy - r$ and $0 \leq
/// r < y$.
pub trait NegMod<RHS = Self> {
    type Output;

    fn neg_mod(self, other: RHS) -> Self::Output;
}

/// Divides the negative of a number by another number, replacing the first number by the remainder.
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = qy - r$ and $0 \leq
/// r < y$.
pub trait NegModAssign<RHS = Self> {
    fn neg_mod_assign(&mut self, other: RHS);
}

/// Divides a number by another number, returning just the remainder. The remainder has the opposite
/// sign as the divisor (second number).
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq
/// |r| < |y|$.
pub trait CeilingMod<RHS = Self> {
    type Output;

    fn ceiling_mod(self, other: RHS) -> Self::Output;
}

/// Divides a number by another number, replacing the first number by the remainder. The remainder
/// has the same sign as the divisor (second number).
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = qy + r$ and $0 \leq
/// |r| < |y|$.
pub trait CeilingModAssign<RHS = Self> {
    fn ceiling_mod_assign(&mut self, other: RHS);
}

/// Raises a number to a power modulo another number $m$. The base must be already reduced modulo
/// $m$.
pub trait ModPow<RHS = Self, M = Self> {
    type Output;

    fn mod_pow(self, exp: RHS, m: M) -> Self::Output;
}

/// Raises a number to a power modulo another number $m$, in place. The base must be already reduced
/// modulo $m$.
pub trait ModPowAssign<RHS = Self, M = Self> {
    fn mod_pow_assign(&mut self, exp: RHS, m: M);
}

/// Raises a number to a power modulo another number $m$. The base must be already reduced modulo
/// $m$.
///
/// If multiple modular exponentiations with the same modulus are necessary, it can be quicker to
/// precompute some piece of data and reuse it in the exponentiation calls. This trait provides a
/// function for precomputing the data and a function for using it during exponentiation.
pub trait ModPowPrecomputed<RHS = Self, M = Self>
where
    Self: Sized,
{
    type Output;
    type Data;

    /// Precomputes some data to use for modular exponentiation.
    fn precompute_mod_pow_data(m: &M) -> Self::Data;

    fn mod_pow_precomputed(self, exp: RHS, m: M, data: &Self::Data) -> Self::Output;
}

/// Raises a number to a power modulo another number $m$, in place. The base must be already reduced
/// modulo $m$.
///
/// If multiple modular exponentiations with the same modulus are necessary, it can be quicker to
/// precompute some piece of data and reuse it in the exponentiation calls. This trait provides a
/// function for using precomputed data during exponentiation. For precomputing the data, use the
/// [`precompute_mod_pow_data`](ModPowPrecomputed::precompute_mod_pow_data) function in
/// [`ModPowPrecomputed`].
pub trait ModPowPrecomputedAssign<RHS: Two = Self, M = Self>: ModPowPrecomputed<RHS, M> {
    fn mod_pow_precomputed_assign(&mut self, exp: RHS, m: M, data: &Self::Data);
}

/// Adds two numbers modulo $2^k$. The inputs must be already reduced modulo $2^k$.
pub trait ModPowerOf2Add<RHS = Self> {
    type Output;

    fn mod_power_of_2_add(self, other: RHS, pow: u64) -> Self::Output;
}

/// Adds two numbers modulo $2^k$, in place. The inputs must be already reduced modulo $2^k$.
pub trait ModPowerOf2AddAssign<RHS = Self> {
    fn mod_power_of_2_add_assign(&mut self, other: RHS, pow: u64);
}

/// Finds the multiplicative inverse of a number modulo $2^k$. The input must be already reduced
/// modulo $2^k$.
pub trait ModPowerOf2Inverse {
    type Output;

    fn mod_power_of_2_inverse(self, pow: u64) -> Option<Self::Output>;
}

/// Checks whether a number is reduced modulo $2^k$.
pub trait ModPowerOf2IsReduced {
    fn mod_power_of_2_is_reduced(&self, pow: u64) -> bool;
}

/// Multiplies two numbers modulo $2^k$. The inputs must be already reduced modulo $2^k$.
pub trait ModPowerOf2Mul<RHS = Self> {
    type Output;

    fn mod_power_of_2_mul(self, other: RHS, pow: u64) -> Self::Output;
}

/// Multiplies two numbers modulo $2^k$, in place. The inputs must be already reduced modulo $2^k$.
pub trait ModPowerOf2MulAssign<RHS = Self> {
    fn mod_power_of_2_mul_assign(&mut self, other: RHS, pow: u64);
}

/// Negates a number modulo $2^k$. The input must be already reduced modulo $2^k$.
pub trait ModPowerOf2Neg {
    type Output;

    fn mod_power_of_2_neg(self, pow: u64) -> Self::Output;
}

/// Negates a number modulo $2^k$ in place. The input must be already reduced modulo $2^k$.
pub trait ModPowerOf2NegAssign {
    fn mod_power_of_2_neg_assign(&mut self, pow: u64);
}

/// Raises a number to a power modulo $2^k$. The base must be already reduced modulo $2^k$.
pub trait ModPowerOf2Pow<RHS = Self> {
    type Output;

    fn mod_power_of_2_pow(self, exp: RHS, pow: u64) -> Self::Output;
}

/// Raises a number to a power modulo $2^k$, in place. The base must be already reduced modulo
/// $2^k$.
pub trait ModPowerOf2PowAssign<RHS = Self> {
    fn mod_power_of_2_pow_assign(&mut self, exp: RHS, pow: u64);
}

/// Left-shifts a number (multiplies it by a power of 2) modulo $2^k$. The number must be already
/// reduced modulo $2^k$.
pub trait ModPowerOf2Shl<RHS> {
    type Output;

    fn mod_power_of_2_shl(self, other: RHS, pow: u64) -> Self::Output;
}

/// Left-shifts a number (multiplies it by a power of 2) modulo $2^k$, in place. The number must be
/// already reduced modulo $2^k$.
pub trait ModPowerOf2ShlAssign<RHS> {
    fn mod_power_of_2_shl_assign(&mut self, other: RHS, pow: u64);
}

/// Right-shifts a number (divides it by a power of 2) modulo $2^k$. The number must be already
/// reduced modulo $2^k$.
pub trait ModPowerOf2Shr<RHS> {
    type Output;

    fn mod_power_of_2_shr(self, other: RHS, pow: u64) -> Self::Output;
}

/// Right-shifts a number (divides it by a power of 2) modulo $2^k$, in place. The number must be
/// already reduced modulo $2^k$.
pub trait ModPowerOf2ShrAssign<RHS> {
    fn mod_power_of_2_shr_assign(&mut self, other: RHS, pow: u64);
}

/// Squares a number modulo $2^k$. The input must be already reduced modulo $2^k$.
pub trait ModPowerOf2Square {
    type Output;

    fn mod_power_of_2_square(self, pow: u64) -> Self::Output;
}

/// Squares a number modulo $2^k$ in place. The input must be already reduced modulo $2^k$.
pub trait ModPowerOf2SquareAssign {
    fn mod_power_of_2_square_assign(&mut self, pow: u64);
}

/// Subtracts two numbers modulo $2^k$. The inputs must be already reduced modulo $2^k$.
pub trait ModPowerOf2Sub<RHS = Self> {
    type Output;

    fn mod_power_of_2_sub(self, other: RHS, pow: u64) -> Self::Output;
}

/// Subtracts two numbers modulo $2^k$, in place. The inputs must be already reduced modulo $2^k$.
pub trait ModPowerOf2SubAssign<RHS = Self> {
    fn mod_power_of_2_sub_assign(&mut self, other: RHS, pow: u64);
}

/// Divides a number by $2^k$, returning just the remainder. The remainder is non-negative.
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0
/// \leq r < 2^k$.
pub trait ModPowerOf2 {
    type Output;

    fn mod_power_of_2(self, other: u64) -> Self::Output;
}

/// Divides a number by $2^k$, replacing the number by the remainder. The remainder is non-negative.
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0
/// \leq r < 2^k$.
pub trait ModPowerOf2Assign {
    fn mod_power_of_2_assign(&mut self, other: u64);
}

/// Divides a number by $2^k$, returning just the remainder. The remainder has the same sign as the
/// number.
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0
/// \leq |r| < 2^k$.
pub trait RemPowerOf2 {
    type Output;

    fn rem_power_of_2(self, other: u64) -> Self::Output;
}

/// Divides a number by $2^k$, replacing the number by the remainder. The remainder has the same
/// sign as the number.
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0
/// \leq |r| < 2^k$.
pub trait RemPowerOf2Assign {
    fn rem_power_of_2_assign(&mut self, other: u64);
}

/// Divides the negative of a number by $2^k$, returning the remainder.
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = q2^k - r$ and $0
/// \leq r < 2^k$.
pub trait NegModPowerOf2 {
    type Output;

    fn neg_mod_power_of_2(self, other: u64) -> Self::Output;
}

/// Divides the negative of a number by $2^k$, replacing the number by the remainder.
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = q2^k - r$ and $0
/// \leq r < 2^k$.
pub trait NegModPowerOf2Assign {
    fn neg_mod_power_of_2_assign(&mut self, other: u64);
}

/// Divides a number by $2^k$, returning just the remainder. The remainder is non-positive.
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0
/// \leq -r < 2^k$.
pub trait CeilingModPowerOf2 {
    type Output;

    fn ceiling_mod_power_of_2(self, other: u64) -> Self::Output;
}

/// Divides a number by $2^k$, replacing the number by the remainder. The remainder is non-positive.
///
/// If the quotient were computed, the quotient and remainder would satisfy $x = q2^k + r$ and $0
/// \leq -r < 2^k$.
pub trait CeilingModPowerOf2Assign {
    fn ceiling_mod_power_of_2_assign(&mut self, other: u64);
}

/// Left-shifts a number (multiplies it by a power of 2) modulo another number $m$. The number must
/// be already reduced modulo $m$.
pub trait ModShl<RHS, M = Self> {
    type Output;

    fn mod_shl(self, other: RHS, m: M) -> Self::Output;
}

/// Left-shifts a number (multiplies it by a power of 2) modulo another number $m$, in place. The
/// number must be already reduced modulo $m$.
pub trait ModShlAssign<RHS, M = Self> {
    fn mod_shl_assign(&mut self, other: RHS, m: M);
}

/// Left-shifts a number (divides it by a power of 2) modulo another number $m$. The number must be
/// already reduced modulo $m$.
pub trait ModShr<RHS, M = Self> {
    type Output;

    fn mod_shr(self, other: RHS, m: M) -> Self::Output;
}

/// Left-shifts a number (divides it by a power of 2) modulo another number $m$, in place. The
/// number must be already reduced modulo $m$.
pub trait ModShrAssign<RHS, M = Self> {
    fn mod_shr_assign(&mut self, other: RHS, m: M);
}

/// Squares a number modulo another number $m$. The input must be already reduced modulo $m$.
pub trait ModSquare<M = Self> {
    type Output;

    fn mod_square(self, m: M) -> Self::Output;
}

/// Squares a number modulo another number $m$, in place. The input must be already reduced modulo
/// $m$.
pub trait ModSquareAssign<M = Self> {
    fn mod_square_assign(&mut self, m: M);
}

/// Squares a number modulo another number $m$. The input must be already reduced modulo $m$.
///
/// If multiple modular squarings with the same modulus are necessary, it can be quicker to
/// precompute some piece of data using
/// [`precompute_mod_pow_data`](ModPowPrecomputed::precompute_mod_pow_data) function in
/// [`ModMulPrecomputed`] and reuse it in the squaring calls.
pub trait ModSquarePrecomputed<RHS = Self, M = Self>: ModPowPrecomputed<RHS, M>
where
    Self: Sized,
{
    fn mod_square_precomputed(self, m: M, data: &Self::Data) -> Self::Output;
}

/// Squares a number modulo another number $m$, in place. The input must be already reduced modulo
/// $m$.
///
/// If multiple modular squarings with the same modulus are necessary, it can be quicker to
/// precompute some piece of data using
/// [`precompute_mod_pow_data`](ModPowPrecomputed::precompute_mod_pow_data) function in
/// [`ModMulPrecomputed`] and reuse it in the squaring calls.
pub trait ModSquarePrecomputedAssign<RHS = Self, M = Self>: ModPowPrecomputed<RHS, M> {
    fn mod_square_precomputed_assign(&mut self, m: M, data: &Self::Data);
}

/// Adds two numbers modulo a third number $m$. The inputs must be already reduced modulo $m$.
pub trait ModSub<RHS = Self, M = Self> {
    type Output;

    fn mod_sub(self, other: RHS, m: M) -> Self::Output;
}

/// Adds two numbers modulo a third number $m$, in place. The inputs must be already reduced modulo
/// $m$.
pub trait ModSubAssign<RHS = Self, M = Self> {
    fn mod_sub_assign(&mut self, other: RHS, m: M);
}

/// Replaces a number with its negative. Assumes the result is representable.
pub trait NegAssign {
    fn neg_assign(&mut self);
}

/// Returns the smallest power of 2 greater than or equal to a number. Assumes the result is
/// representable.
pub trait NextPowerOf2 {
    type Output;

    fn next_power_of_2(self) -> Self::Output;
}

/// Replaces a number with the smallest power of 2 greater than or equal it. Assumes the result is
/// representable.
pub trait NextPowerOf2Assign {
    fn next_power_of_2_assign(&mut self);
}

/// Takes the absolute value of a number.
///
/// Returns a tuple of the result along with a boolean indicating whether an arithmetic overflow
/// occured. If an overflow occurred, then the wrapped number is returned.
pub trait OverflowingAbs {
    type Output;

    fn overflowing_abs(self) -> (Self::Output, bool);
}

/// Replaces a number with its absolute value.
///
/// Returns a boolean indicating whether an arithmetic overflow occurred. If an overflow occurred,
/// then the wrapped number is assigned.
pub trait OverflowingAbsAssign {
    fn overflowing_abs_assign(&mut self) -> bool;
}

/// Adds two numbers.
///
/// Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow
/// occurred. If an overflow occurred, then the wrapped number is returned.
pub trait OverflowingAdd<RHS = Self> {
    type Output;

    fn overflowing_add(self, other: RHS) -> (Self::Output, bool);
}

/// Adds a number to another number in place.
///
/// Returns a boolean indicating whether an arithmetic overflow occurred. If an overflow occurred,
/// then the wrapped number is assigned.
pub trait OverflowingAddAssign<RHS = Self> {
    fn overflowing_add_assign(&mut self, other: RHS) -> bool;
}

/// Adds a number and the product of two other numbers.
///
/// Returns a tuple of the result along with a boolean indicating whether an arithmetic overflow
/// occurred. If an overflow occurred, then the wrapped number is returned.
pub trait OverflowingAddMul<Y = Self, Z = Self> {
    type Output;

    fn overflowing_add_mul(self, y: Y, z: Z) -> (Self::Output, bool);
}

/// Adds a number and the product of two other numbers, in place.
///
/// Returns a tuple of the result along with a boolean indicating whether an arithmetic overflow
/// occurred. If an overflow occurred, then the wrapped number is returned.
pub trait OverflowingAddMulAssign<Y = Self, Z = Self> {
    fn overflowing_add_mul_assign(&mut self, y: Y, z: Z) -> bool;
}

/// Divides two numbers.
///
/// Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow
/// occurred. If an overflow occurred, then the wrapped number is returned.
pub trait OverflowingDiv<RHS = Self> {
    type Output;

    fn overflowing_div(self, other: RHS) -> (Self::Output, bool);
}

/// Divides a number by another number in place.
///
/// Returns a boolean indicating whether an arithmetic overflow occurred. If an overflow occurred,
/// then the wrapped number is assigned.
pub trait OverflowingDivAssign<RHS = Self> {
    fn overflowing_div_assign(&mut self, other: RHS) -> bool;
}

/// Multiplies two numbers.
///
/// Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow
/// occurred. If an overflow occurred, then the wrapped number is returned.
pub trait OverflowingMul<RHS = Self> {
    type Output;

    fn overflowing_mul(self, other: RHS) -> (Self::Output, bool);
}

/// Multiplies a number by another number in place.
///
/// Returns a boolean indicating whether an arithmetic overflow occurred. If an overflow occurred,
/// then the wrapped number is assigned.
pub trait OverflowingMulAssign<RHS = Self> {
    fn overflowing_mul_assign(&mut self, other: RHS) -> bool;
}

/// Negates a number.
///
/// Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow
/// occurred. If an overflow occurred, then the wrapped number is returned.
pub trait OverflowingNeg {
    type Output;

    fn overflowing_neg(self) -> (Self::Output, bool);
}

/// Negates a number in place.
///
/// Returns a boolean indicating whether an arithmetic overflow occurred. If an overflow occurred,
/// then the wrapped number is assigned.
pub trait OverflowingNegAssign {
    fn overflowing_neg_assign(&mut self) -> bool;
}

/// Raises a number to a power.
///
/// Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow
/// occurred. If an overflow occurred, then the wrapped number is returned.
pub trait OverflowingPow<RHS> {
    type Output;

    fn overflowing_pow(self, exp: RHS) -> (Self::Output, bool);
}

/// Raises a number to a power in place.
///
/// Returns a boolean indicating whether an arithmetic overflow occurred. If an overflow occurred,
/// then the wrapped number is assigned.
pub trait OverflowingPowAssign<RHS = Self> {
    fn overflowing_pow_assign(&mut self, exp: RHS) -> bool;
}

/// Squares a number.
///
/// Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow
/// occurred. If an overflow occurred, then the wrapped number is returned.
pub trait OverflowingSquare {
    type Output;

    fn overflowing_square(self) -> (Self::Output, bool);
}

/// Squares a number in place.
///
/// Returns a boolean indicating whether an arithmetic overflow occurred. If an overflow occurred,
/// then the wrapped number is assigned.
pub trait OverflowingSquareAssign {
    fn overflowing_square_assign(&mut self) -> bool;
}

/// Subtracts two numbers.
///
/// Returns a tuple of the sum along with a boolean indicating whether an arithmetic overflow
/// occurred. If an overflow occurred, then the wrapped number is returned.
pub trait OverflowingSub<RHS = Self> {
    type Output;

    fn overflowing_sub(self, other: RHS) -> (Self::Output, bool);
}

/// Subtracts a number by another number in place.
///
/// Returns a boolean indicating whether an arithmetic overflow occurred. If an overflow occurred,
/// then the wrapped number is assigned.
pub trait OverflowingSubAssign<RHS = Self> {
    fn overflowing_sub_assign(&mut self, other: RHS) -> bool;
}

/// Subtracts a number by the product of two other numbers.
///
/// Returns a tuple of the result along with a boolean indicating whether an arithmetic overflow
/// occurred. If an overflow occurred, then the wrapped number is returned.
pub trait OverflowingSubMul<Y = Self, Z = Self> {
    type Output;

    fn overflowing_sub_mul(self, y: Y, z: Z) -> (Self::Output, bool);
}

/// Subtracts a number by the product of two other numbers, in place.
///
/// Returns a tuple of the result along with a boolean indicating whether an arithmetic overflow
/// occurred. If an overflow occurred, then the wrapped number is returned.
pub trait OverflowingSubMulAssign<Y = Self, Z = Self> {
    fn overflowing_sub_mul_assign(&mut self, y: Y, z: Z) -> bool;
}

/// Determines whether a number is even or odd.
pub trait Parity {
    /// Determines whether a number is even.
    fn even(self) -> bool;

    /// Determines whether a number is odd.
    fn odd(self) -> bool;
}

/// Raises a number to a power. Assumes the result is representable.
pub trait Pow<RHS> {
    type Output;

    fn pow(self, exp: RHS) -> Self::Output;
}

/// Raises a number to a power in place. Assumes the result is representable.
pub trait PowAssign<RHS = Self> {
    fn pow_assign(&mut self, exp: RHS);
}

/// Raises 2 to a power.
pub trait PowerOf2<POW> {
    fn power_of_2(pow: POW) -> Self;
}

pub trait Primorial {
    fn primorial(n: u64) -> Self;

    fn product_of_first_n_primes(n: u64) -> Self;
}

pub trait CheckedPrimorial: Sized {
    fn checked_primorial(n: u64) -> Option<Self>;

    fn checked_product_of_first_n_primes(n: u64) -> Option<Self>;
}

/// Finds the reciprocal (multiplicative inverse) of a number.
pub trait Reciprocal {
    type Output;

    fn reciprocal(self) -> Self::Output;
}

/// Replaces a number with its reciprocal (multiplicative inverse).
pub trait ReciprocalAssign {
    fn reciprocal_assign(&mut self);
}

/// Finds the floor of the $n$th root of a number.
pub trait FloorRoot<POW> {
    type Output;

    fn floor_root(self, pow: POW) -> Self::Output;
}

/// Replaces a number with the floor of its $n$th root.
pub trait FloorRootAssign<POW> {
    fn floor_root_assign(&mut self, pow: POW);
}

/// Finds the ceiling of the $n$th root of a number.
pub trait CeilingRoot<POW> {
    type Output;

    fn ceiling_root(self, pow: POW) -> Self::Output;
}

/// Replaces a number with the ceiling of its $n$th root.
pub trait CeilingRootAssign<POW> {
    fn ceiling_root_assign(&mut self, pow: POW);
}

/// Finds the $n$th root of a number, returning `None` if it is not a perfect $n$th power.
pub trait CheckedRoot<POW> {
    type Output;

    fn checked_root(self, pow: POW) -> Option<Self::Output>;
}

/// Finds the floor of the $n$th root of a number, returning both the root and the remainder.
pub trait RootRem<POW> {
    type RootOutput;
    type RemOutput;

    fn root_rem(self, exp: POW) -> (Self::RootOutput, Self::RemOutput);
}

/// Replaces a number with the floor of its $n$th root, returning the remainder.
pub trait RootAssignRem<POW> {
    type RemOutput;

    fn root_assign_rem(&mut self, exp: POW) -> Self::RemOutput;
}

/// Rotates a number left, inserting the leftmost bits into the right end.
pub trait RotateLeft {
    type Output;

    fn rotate_left(self, n: u64) -> Self::Output;
}

/// Rotates a number left, inserting the leftmost bits into the right end, in place.
pub trait RotateLeftAssign {
    fn rotate_left_assign(&mut self, n: u64);
}

/// Rotates a number right, inserting the leftmost bits into the left end.
pub trait RotateRight {
    type Output;

    fn rotate_right(self, n: u64) -> Self::Output;
}

/// Rotates a number right, inserting the leftmost bits into the left end, in place.
pub trait RotateRightAssign {
    fn rotate_right_assign(&mut self, n: u64);
}

/// Rounds a number to a multiple of another number, according to a specified rounding mode. An
/// [`Ordering`] is also returned, indicating whether the returned value is less than, equal to, or
/// greater than the original value.
pub trait RoundToMultiple<RHS = Self> {
    type Output;

    fn round_to_multiple(self, other: RHS, rm: RoundingMode) -> (Self::Output, Ordering);
}

/// Rounds a number to a multiple of another number in place, according to a specified rounding
/// mode. [`Ordering`] is returned, indicating whether the returned value is less than, equal to, or
/// greater than the original value.
pub trait RoundToMultipleAssign<RHS = Self> {
    fn round_to_multiple_assign(&mut self, other: RHS, rm: RoundingMode) -> Ordering;
}

/// Rounds a number to a multiple of $2^k$, according to a specified rounding mode. An [`Ordering`]
/// is also returned, indicating whether the returned value is less than, equal to, or greater than
/// the original value.
pub trait RoundToMultipleOfPowerOf2<RHS> {
    type Output;

    fn round_to_multiple_of_power_of_2(
        self,
        pow: RHS,
        rm: RoundingMode,
    ) -> (Self::Output, Ordering);
}

/// Rounds a number to a multiple of $2^k$ in place, according to a specified rounding mode. An
/// [`Ordering`] is returned, indicating whether the returned value is less than, equal to, or
/// greater than the original value.
pub trait RoundToMultipleOfPowerOf2Assign<RHS> {
    fn round_to_multiple_of_power_of_2_assign(&mut self, pow: RHS, rm: RoundingMode) -> Ordering;
}

/// Takes the absolute value of a number, saturating at the numeric bounds instead of overflowing.
pub trait SaturatingAbs {
    type Output;

    fn saturating_abs(self) -> Self::Output;
}

/// Replaces a number with its absolute value, saturating at the numeric bounds instead of
/// overflowing.
pub trait SaturatingAbsAssign {
    fn saturating_abs_assign(&mut self);
}

/// Adds two numbers, saturating at the numeric bounds instead of overflowing.
pub trait SaturatingAdd<RHS = Self> {
    type Output;

    fn saturating_add(self, other: RHS) -> Self::Output;
}

/// Add a number to another number in place, saturating at the numeric bounds instead of
/// overflowing.
pub trait SaturatingAddAssign<RHS = Self> {
    fn saturating_add_assign(&mut self, other: RHS);
}

/// Adds a number and the product of two other numbers, saturating at the numeric bounds instead of
/// overflowing.
pub trait SaturatingAddMul<Y = Self, Z = Self> {
    type Output;

    fn saturating_add_mul(self, y: Y, z: Z) -> Self::Output;
}

/// Adds a number and the product of two other numbers in place, saturating at the numeric bounds
/// instead of overflowing.
pub trait SaturatingAddMulAssign<Y = Self, Z = Self> {
    fn saturating_add_mul_assign(&mut self, y: Y, z: Z);
}

/// Multiplies two numbers, saturating at the numeric bounds instead of overflowing.
pub trait SaturatingMul<RHS = Self> {
    type Output;

    fn saturating_mul(self, other: RHS) -> Self::Output;
}

/// Multiplies a number by another number in place, saturating at the numeric bounds instead of
/// overflowing.
pub trait SaturatingMulAssign<RHS = Self> {
    fn saturating_mul_assign(&mut self, other: RHS);
}

/// Negates a number, saturating at the numeric bounds instead of overflowing.
pub trait SaturatingNeg {
    type Output;

    fn saturating_neg(self) -> Self::Output;
}

/// Negates a number in place, saturating at the numeric bounds instead of overflowing.
pub trait SaturatingNegAssign {
    fn saturating_neg_assign(&mut self);
}

/// Raises a number to a power, saturating at the numeric bounds instead of overflowing.
pub trait SaturatingPow<RHS> {
    type Output;

    fn saturating_pow(self, exp: RHS) -> Self::Output;
}

/// Raises a number to a power in place, saturating at the numeric bounds instead of overflowing.
pub trait SaturatingPowAssign<RHS = Self> {
    fn saturating_pow_assign(&mut self, exp: RHS);
}

/// Squares a number, saturating at the numeric bounds instead of overflowing.
pub trait SaturatingSquare {
    type Output;

    fn saturating_square(self) -> Self::Output;
}

/// Squares a number in place, saturating at the numeric bounds instead of overflowing.
pub trait SaturatingSquareAssign {
    fn saturating_square_assign(&mut self);
}

/// Subtracts two numbers, saturating at the numeric bounds instead of overflowing.
pub trait SaturatingSub<RHS = Self> {
    type Output;

    fn saturating_sub(self, other: RHS) -> Self::Output;
}

/// Subtracts a number by another number in place, saturating at the numeric bounds instead of
/// overflowing.
pub trait SaturatingSubAssign<RHS = Self> {
    fn saturating_sub_assign(&mut self, other: RHS);
}

/// Subtracts a number by the product of two other numbers, saturating at the numeric bounds instead
/// of overflowing.
pub trait SaturatingSubMul<Y = Self, Z = Self> {
    type Output;

    fn saturating_sub_mul(self, y: Y, z: Z) -> Self::Output;
}

/// Subtracts a number by the product of two other numbers in place, saturating at the numeric
/// bounds instead of overflowing.
pub trait SaturatingSubMulAssign<Y = Self, Z = Self> {
    fn saturating_sub_mul_assign(&mut self, y: Y, z: Z);
}

/// Left-shifts a number (multiplies it by a power of 2), rounding the result according to a
/// specified rounding mode. An [`Ordering`] is also returned, indicating whether the returned value
/// is less than, equal to, or greater than the exact value.
///
/// Rounding might only be necessary if `other` is negative.
pub trait ShlRound<RHS> {
    type Output;

    fn shl_round(self, other: RHS, rm: RoundingMode) -> (Self::Output, Ordering);
}

/// Left-shifts a number (multiplies it by a power of 2) in place, rounding the result according to
/// a specified rounding mode. An [`Ordering`] is also returned, indicating whether the assigned
/// value is less than, equal to, or greater than the exact value.
///
/// Rounding might only be necessary if `other` is negative.
pub trait ShlRoundAssign<RHS> {
    fn shl_round_assign(&mut self, other: RHS, rm: RoundingMode) -> Ordering;
}

/// Right-shifts a number (divides it by a power of 2), rounding the result according to a specified
/// rounding mode. An [`Ordering`] is also returned, indicating whether the returned value is less
/// than, equal to, or greater than the exact value.
///
/// Rounding might only be necessary if `other` is positive.
pub trait ShrRound<RHS> {
    type Output;

    fn shr_round(self, other: RHS, rm: RoundingMode) -> (Self::Output, Ordering);
}

/// Right-shifts a number (divides it by a power of 2) in place, rounding the result according to a
/// specified rounding mode. An [`Ordering`] is also returned, indicating whether the assigned value
/// is less than, equal to, or greater than the exact value.
///
/// Rounding might only be necessary if `other` is positive.
pub trait ShrRoundAssign<RHS> {
    fn shr_round_assign(&mut self, other: RHS, rm: RoundingMode) -> Ordering;
}

/// Returns `Greater`, `Equal`, or `Less`, depending on whether a number is positive, zero, or
/// negative, respectively.
pub trait Sign {
    fn sign(&self) -> Ordering;
}

/// Takes the square root of a number.
pub trait Sqrt {
    type Output;

    fn sqrt(self) -> Self::Output;
}

/// Replaces a number with its square root.
pub trait SqrtAssign {
    fn sqrt_assign(&mut self);
}

/// Finds the floor of the square root of a number.
pub trait FloorSqrt {
    type Output;

    fn floor_sqrt(self) -> Self::Output;
}

/// Replaces a number with the floor of its square root.
pub trait FloorSqrtAssign {
    fn floor_sqrt_assign(&mut self);
}

/// Finds the ceiling of the square root of a number.
pub trait CeilingSqrt {
    type Output;

    fn ceiling_sqrt(self) -> Self::Output;
}

/// Replaces a number with the ceiling of its square root.
pub trait CeilingSqrtAssign {
    fn ceiling_sqrt_assign(&mut self);
}

/// Finds the square root of a number, returning `None` if it is not a perfect square.
pub trait CheckedSqrt {
    type Output;

    fn checked_sqrt(self) -> Option<Self::Output>;
}

/// Finds the floor of the square root of a number, returning both the root and the remainder.
pub trait SqrtRem {
    type SqrtOutput;
    type RemOutput;

    fn sqrt_rem(self) -> (Self::SqrtOutput, Self::RemOutput);
}

/// Replaces a number with the floor of its square root, returning the remainder.
pub trait SqrtAssignRem {
    type RemOutput;

    fn sqrt_assign_rem(&mut self) -> Self::RemOutput;
}

/// Squares a number.
pub trait Square {
    type Output;

    fn square(self) -> Self::Output;
}

/// Replaces a number with its square.
pub trait SquareAssign {
    fn square_assign(&mut self);
}

/// Subtracts a number by the product of two other numbers.
pub trait SubMul<Y = Self, Z = Self> {
    type Output;

    fn sub_mul(self, y: Y, z: Z) -> Self::Output;
}

/// Subtracts a number by the product of two other numbers, in place.
pub trait SubMulAssign<Y = Self, Z = Self> {
    fn sub_mul_assign(&mut self, y: Y, z: Z);
}

/// Takes the absolute value of a number, wrapping around at the boundary of the type.
pub trait WrappingAbs {
    type Output;

    fn wrapping_abs(self) -> Self::Output;
}

/// Replaces a number with its absolute value, wrapping around at the boundary of the type.
pub trait WrappingAbsAssign {
    fn wrapping_abs_assign(&mut self);
}

/// Adds two numbers, wrapping around at the boundary of the type.
pub trait WrappingAdd<RHS = Self> {
    type Output;

    fn wrapping_add(self, other: RHS) -> Self::Output;
}

/// Adds a number to another number in place, wrapping around at the boundary of the type.
pub trait WrappingAddAssign<RHS = Self> {
    fn wrapping_add_assign(&mut self, other: RHS);
}

/// Adds a number and the product of two other numbers, wrapping around at the boundary of the type.
pub trait WrappingAddMul<Y = Self, Z = Self> {
    type Output;

    fn wrapping_add_mul(self, y: Y, z: Z) -> Self::Output;
}

/// Adds a number and the product of two other numbers, in place, wrapping around at the boundary of
/// the type.
pub trait WrappingAddMulAssign<Y = Self, Z = Self> {
    fn wrapping_add_mul_assign(&mut self, y: Y, z: Z);
}

/// Divides a number by another number, wrapping around at the boundary of the type.
pub trait WrappingDiv<RHS = Self> {
    type Output;

    fn wrapping_div(self, other: RHS) -> Self::Output;
}

/// Divides a number by another number in place, wrapping around at the boundary of the type.
pub trait WrappingDivAssign<RHS = Self> {
    fn wrapping_div_assign(&mut self, other: RHS);
}

/// Multiplies two numbers, wrapping around at the boundary of the type.
pub trait WrappingMul<RHS = Self> {
    type Output;

    fn wrapping_mul(self, other: RHS) -> Self::Output;
}

/// Multiplies a number by another number in place, wrapping around at the boundary of the type.
pub trait WrappingMulAssign<RHS = Self> {
    fn wrapping_mul_assign(&mut self, other: RHS);
}

/// Negates a number, wrapping around at the boundary of the type.
pub trait WrappingNeg {
    type Output;

    fn wrapping_neg(self) -> Self::Output;
}

/// Negates a number in place, wrapping around at the boundary of the type.
pub trait WrappingNegAssign {
    fn wrapping_neg_assign(&mut self);
}

/// Raises a number to a power, wrapping around at the boundary of the type.
pub trait WrappingPow<RHS> {
    type Output;

    fn wrapping_pow(self, exp: RHS) -> Self::Output;
}

/// Raises a number to a power in place, wrapping around at the boundary of the type.
pub trait WrappingPowAssign<RHS = Self> {
    fn wrapping_pow_assign(&mut self, exp: RHS);
}

/// Squares a number, wrapping around at the boundary of the type.
pub trait WrappingSquare {
    type Output;

    fn wrapping_square(self) -> Self::Output;
}

/// Squares a number in place, wrapping around at the boundary of the type.
pub trait WrappingSquareAssign {
    fn wrapping_square_assign(&mut self);
}

/// Subtracts two numbers, wrapping around at the boundary of the type.
pub trait WrappingSub<RHS = Self> {
    type Output;

    fn wrapping_sub(self, other: RHS) -> Self::Output;
}

/// Subtracts a number by another number in place, wrapping around at the boundary of the type.
pub trait WrappingSubAssign<RHS = Self> {
    fn wrapping_sub_assign(&mut self, other: RHS);
}

/// Subtracts a number by the product of two other numbers, wrapping around at the boundary of the
/// type.
pub trait WrappingSubMul<Y = Self, Z = Self> {
    type Output;

    fn wrapping_sub_mul(self, y: Y, z: Z) -> Self::Output;
}

/// Subtracts a number by the product of two other numbers, in place, wrapping around at the
/// boundary of the type.
pub trait WrappingSubMulAssign<Y = Self, Z = Self> {
    fn wrapping_sub_mul_assign(&mut self, y: Y, z: Z);
}

/// Multiplies two numbers, returning the product as a pair of `Self` values.
///
/// The more significant number always comes first.
pub trait XMulYToZZ: Sized {
    fn x_mul_y_to_zz(x: Self, y: Self) -> (Self, Self);
}

/// Adds two numbers, each composed of two `Self` values, returning the sum as a pair of `Self`
/// values.
///
/// The more significant number always comes first. Addition is wrapping, and overflow is not
/// indicated.
pub trait XXAddYYToZZ: Sized {
    fn xx_add_yy_to_zz(x_1: Self, x_0: Self, y_1: Self, y_0: Self) -> (Self, Self);
}

/// Computes the quotient and remainder of two numbers. The first is composed of two `Self` values,
/// and the second of a single one.
///
/// `x_1` must be less than `y`.
pub trait XXDivModYToQR: Sized {
    fn xx_div_mod_y_to_qr(x_1: Self, x_0: Self, y: Self) -> (Self, Self);
}

/// Subtracts two numbers, each composed of two `Self` values, returing the difference as a pair of
/// `Self` values.
///
/// The more significant number always comes first. Subtraction is wrapping, and overflow is not
/// indicated.
pub trait XXSubYYToZZ: Sized {
    fn xx_sub_yy_to_zz(x_1: Self, x_0: Self, y_1: Self, y_0: Self) -> (Self, Self);
}

/// Adds two numbers, each composed of three `Self` values, returning the sum as a triple of `Self`
/// values.
///
/// The more significant number always comes first. Addition is wrapping, and overflow is not
/// indicated.
pub trait XXXAddYYYToZZZ: Sized {
    fn xxx_add_yyy_to_zzz(
        x_2: Self,
        x_1: Self,
        x_0: Self,
        y_2: Self,
        y_1: Self,
        y_0: Self,
    ) -> (Self, Self, Self);
}

/// Subtracts two numbers, each composed of three `Self` values, returing the difference as a triple
/// of `Self` values.
///
/// The more significant number always comes first. Subtraction is wrapping, and overflow is not
/// indicated.
pub trait XXXSubYYYToZZZ: Sized {
    fn xxx_sub_yyy_to_zzz(
        x_2: Self,
        x_1: Self,
        x_0: Self,
        y_2: Self,
        y_1: Self,
        y_0: Self,
    ) -> (Self, Self, Self);
}

/// Adds two numbers, each composed of four `Self` values, returning the sum as a quadruple of
/// `Self` values.
///
/// The more significant number always comes first. Addition is wrapping, and overflow is not
/// indicated.
pub trait XXXXAddYYYYToZZZZ: Sized {
    #[allow(clippy::too_many_arguments)]
    fn xxxx_add_yyyy_to_zzzz(
        x_3: Self,
        x_2: Self,
        x_1: Self,
        x_0: Self,
        y_3: Self,
        y_2: Self,
        y_1: Self,
        y_0: Self,
    ) -> (Self, Self, Self, Self);
}