1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{WrappingSubMul, WrappingSubMulAssign};
use crate::num::basic::integers::PrimitiveInt;
fn wrapping_sub_mul<T: PrimitiveInt>(x: T, y: T, z: T) -> T {
x.wrapping_sub(y.wrapping_mul(z))
}
fn wrapping_sub_mul_assign<T: PrimitiveInt>(x: &mut T, y: T, z: T) {
x.wrapping_sub_assign(y.wrapping_mul(z));
}
macro_rules! impl_wrapping_sub_mul {
($t:ident) => {
impl WrappingSubMul<$t> for $t {
type Output = $t;
/// Subtracts a number by the product of two other numbers, wrapping around at the
/// boundary of the type.
///
/// $f(x, y, z) = w$, where $w \equiv x - yz \mod 2^W$ and $W$ is `Self::WIDTH`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::wrapping_sub_mul#wrapping_sub_mul).
#[inline]
fn wrapping_sub_mul(self, y: $t, z: $t) -> $t {
wrapping_sub_mul(self, y, z)
}
}
impl WrappingSubMulAssign<$t> for $t {
/// Subtracts a number by the product of two other numbers in place, wrapping around at
/// the boundary of the type.
///
/// $x \gets w$, where $w \equiv x - yz \mod 2^W$ and $W$ is `Self::WIDTH`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::wrapping_sub_mul#wrapping_sub_mul_assign).
#[inline]
fn wrapping_sub_mul_assign(&mut self, y: $t, z: $t) {
wrapping_sub_mul_assign(self, y, z)
}
}
};
}
apply_to_primitive_ints!(impl_wrapping_sub_mul);