1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the GNU MP Library.
//
// Copyright © 1991-1994, 1996, 1997, 1999-2005, 2007-2009, 2011-2020 Free Software
// Foundation, Inc.
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::XMulYToZZ;
use crate::num::basic::integers::PrimitiveInt;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::half::{wide_join_halves, wide_split_in_half, wide_upper_half};
use crate::num::conversion::traits::{HasHalf, SplitInHalf, WrappingFrom};
fn implicit_x_mul_y_to_zz<T, DT: From<T> + HasHalf<Half = T> + PrimitiveUnsigned + SplitInHalf>(
x: T,
y: T,
) -> (T, T) {
(DT::from(x) * DT::from(y)).split_in_half()
}
pub_test! {explicit_x_mul_y_to_zz<T: PrimitiveUnsigned>(x: T, y: T) -> (T, T) {
let (x_1, x_0) = wide_split_in_half(x);
let (y_1, y_0) = wide_split_in_half(y);
let x_0_y_0 = x_0 * y_0;
let mut x_0_y_1 = x_0 * y_1;
let x_1_y_0 = x_1 * y_0;
let mut x_1_y_1 = x_1 * y_1;
let (x_0_y_0_1, x_0_y_0_0) = wide_split_in_half(x_0_y_0);
x_0_y_1.wrapping_add_assign(x_0_y_0_1);
if x_0_y_1.overflowing_add_assign(x_1_y_0) {
x_1_y_1.wrapping_add_assign(T::power_of_2(T::WIDTH >> 1));
}
let z_1 = x_1_y_1.wrapping_add(wide_upper_half(x_0_y_1));
let z_0 = wide_join_halves(x_0_y_1, x_0_y_0_0);
(z_1, z_0)
}}
macro_rules! implicit_x_mul_y_to_zz {
($t:ident, $dt:ident) => {
impl XMulYToZZ for $t {
/// Multiplies two numbers, returning the product as a pair of `Self` values.
///
/// The more significant value always comes first.
///
/// $$
/// f(x, y) = (z_1, z_0),
/// $$
/// where $W$ is `Self::WIDTH`,
///
/// $x, y, z_1, z_0 < 2^W$, and
/// $$
/// xy = 2^Wz_1 + z_0.
/// $$
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::x_mul_y_to_zz#x_mul_y_to_zz).
///
/// This is equivalent to `umul_ppmm` from `longlong.h`, GMP 6.2.1, where `(w1, w0)` is
/// returned.
#[inline]
fn x_mul_y_to_zz(x: $t, y: $t) -> ($t, $t) {
implicit_x_mul_y_to_zz::<$t, $dt>(x, y)
}
}
};
}
implicit_x_mul_y_to_zz!(u8, u16);
implicit_x_mul_y_to_zz!(u16, u32);
implicit_x_mul_y_to_zz!(u32, u64);
implicit_x_mul_y_to_zz!(u64, u128);
impl XMulYToZZ for usize {
/// Multiplies two numbers, returning the product as a pair of [`usize`] values.
///
/// The more significant value always comes first.
///
/// $$
/// f(x, y) = (z_1, z_0),
/// $$
/// where $W$ is `Self::WIDTH`,
///
/// $x, y, z_1, z_0 < 2^W$, and
/// $$
/// xy = 2^Wz_1 + z_0.
/// $$
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::x_mul_y_to_zz#x_mul_y_to_zz).
///
/// This is equivalent to `umul_ppmm` from `longlong.h`, GMP 6.2.1, where `(w1, w0)` is
/// returned.
fn x_mul_y_to_zz(x: usize, y: usize) -> (usize, usize) {
if usize::WIDTH == u32::WIDTH {
let (z_1, z_0) = u32::x_mul_y_to_zz(u32::wrapping_from(x), u32::wrapping_from(y));
(usize::wrapping_from(z_1), usize::wrapping_from(z_0))
} else {
let (z_1, z_0) = u64::x_mul_y_to_zz(u64::wrapping_from(x), u64::wrapping_from(y));
(usize::wrapping_from(z_1), usize::wrapping_from(z_0))
}
}
}
impl XMulYToZZ for u128 {
/// Multiplies two numbers, returning the product as a pair of [`u128`] values.
///
/// The more significant value always comes first.
///
/// $$
/// f(x, y) = (z_1, z_0),
/// $$
/// where $W$ is `Self::WIDTH`,
///
/// $x, y, z_1, z_0 < 2^W$, and
/// $$
/// xy = 2^Wz_1 + z_0.
/// $$
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::x_mul_y_to_zz#x_mul_y_to_zz).
///
/// This is equivalent to `umul_ppmm` from `longlong.h`, GMP 6.2.1, where `(w1, w0)` is
/// returned.
#[inline]
fn x_mul_y_to_zz(x: u128, y: u128) -> (u128, u128) {
explicit_x_mul_y_to_zz(x, y)
}
}