1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the GNU MP Library.
//
//      Copyright © 1991-1994, 1996, 1997, 1999-2005, 2007-2009, 2011-2020 Free Software
//      Foundation, Inc.
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::arithmetic::traits::XMulYToZZ;
use crate::num::basic::integers::PrimitiveInt;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::half::{wide_join_halves, wide_split_in_half, wide_upper_half};
use crate::num::conversion::traits::{HasHalf, SplitInHalf, WrappingFrom};

fn implicit_x_mul_y_to_zz<T, DT: From<T> + HasHalf<Half = T> + PrimitiveUnsigned + SplitInHalf>(
    x: T,
    y: T,
) -> (T, T) {
    (DT::from(x) * DT::from(y)).split_in_half()
}

pub_test! {explicit_x_mul_y_to_zz<T: PrimitiveUnsigned>(x: T, y: T) -> (T, T) {
    let (x_1, x_0) = wide_split_in_half(x);
    let (y_1, y_0) = wide_split_in_half(y);
    let x_0_y_0 = x_0 * y_0;
    let mut x_0_y_1 = x_0 * y_1;
    let x_1_y_0 = x_1 * y_0;
    let mut x_1_y_1 = x_1 * y_1;
    let (x_0_y_0_1, x_0_y_0_0) = wide_split_in_half(x_0_y_0);
    x_0_y_1.wrapping_add_assign(x_0_y_0_1);
    if x_0_y_1.overflowing_add_assign(x_1_y_0) {
        x_1_y_1.wrapping_add_assign(T::power_of_2(T::WIDTH >> 1));
    }
    let z_1 = x_1_y_1.wrapping_add(wide_upper_half(x_0_y_1));
    let z_0 = wide_join_halves(x_0_y_1, x_0_y_0_0);
    (z_1, z_0)
}}

macro_rules! implicit_x_mul_y_to_zz {
    ($t:ident, $dt:ident) => {
        impl XMulYToZZ for $t {
            /// Multiplies two numbers, returning the product as a pair of `Self` values.
            ///
            /// The more significant value always comes first.
            ///
            /// $$
            /// f(x, y) = (z_1, z_0),
            /// $$
            /// where $W$ is `Self::WIDTH`,
            ///
            /// $x, y, z_1, z_0 < 2^W$, and
            /// $$
            /// xy = 2^Wz_1 + z_0.
            /// $$
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::x_mul_y_to_zz#x_mul_y_to_zz).
            ///
            /// This is equivalent to `umul_ppmm` from `longlong.h`, GMP 6.2.1, where `(w1, w0)` is
            /// returned.
            #[inline]
            fn x_mul_y_to_zz(x: $t, y: $t) -> ($t, $t) {
                implicit_x_mul_y_to_zz::<$t, $dt>(x, y)
            }
        }
    };
}

implicit_x_mul_y_to_zz!(u8, u16);
implicit_x_mul_y_to_zz!(u16, u32);
implicit_x_mul_y_to_zz!(u32, u64);
implicit_x_mul_y_to_zz!(u64, u128);

impl XMulYToZZ for usize {
    /// Multiplies two numbers, returning the product as a pair of [`usize`] values.
    ///
    /// The more significant value always comes first.
    ///
    /// $$
    /// f(x, y) = (z_1, z_0),
    /// $$
    /// where $W$ is `Self::WIDTH`,
    ///
    /// $x, y, z_1, z_0 < 2^W$, and
    /// $$
    /// xy = 2^Wz_1 + z_0.
    /// $$
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// See [here](super::x_mul_y_to_zz#x_mul_y_to_zz).
    ///
    /// This is equivalent to `umul_ppmm` from `longlong.h`, GMP 6.2.1, where `(w1, w0)` is
    /// returned.
    fn x_mul_y_to_zz(x: usize, y: usize) -> (usize, usize) {
        if usize::WIDTH == u32::WIDTH {
            let (z_1, z_0) = u32::x_mul_y_to_zz(u32::wrapping_from(x), u32::wrapping_from(y));
            (usize::wrapping_from(z_1), usize::wrapping_from(z_0))
        } else {
            let (z_1, z_0) = u64::x_mul_y_to_zz(u64::wrapping_from(x), u64::wrapping_from(y));
            (usize::wrapping_from(z_1), usize::wrapping_from(z_0))
        }
    }
}

impl XMulYToZZ for u128 {
    /// Multiplies two numbers, returning the product as a pair of [`u128`] values.
    ///
    /// The more significant value always comes first.
    ///
    /// $$
    /// f(x, y) = (z_1, z_0),
    /// $$
    /// where $W$ is `Self::WIDTH`,
    ///
    /// $x, y, z_1, z_0 < 2^W$, and
    /// $$
    /// xy = 2^Wz_1 + z_0.
    /// $$
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// See [here](super::x_mul_y_to_zz#x_mul_y_to_zz).
    ///
    /// This is equivalent to `umul_ppmm` from `longlong.h`, GMP 6.2.1, where `(w1, w0)` is
    /// returned.
    #[inline]
    fn x_mul_y_to_zz(x: u128, y: u128) -> (u128, u128) {
        explicit_x_mul_y_to_zz(x, y)
    }
}