1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the GNU MP Library.
//
//      Copyright © 1991-1994, 1996, 1997, 1999-2005, 2007-2009, 2011-2020 Free Software
//      Foundation, Inc.
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::arithmetic::traits::XXSubYYToZZ;
use crate::num::basic::integers::PrimitiveInt;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::{JoinHalves, SplitInHalf, WrappingFrom};

fn implicit_xx_sub_yy_to_zz<DT: JoinHalves + PrimitiveUnsigned + SplitInHalf>(
    x_1: DT::Half,
    x_0: DT::Half,
    y_1: DT::Half,
    y_0: DT::Half,
) -> (DT::Half, DT::Half) {
    DT::join_halves(x_1, x_0)
        .wrapping_sub(DT::join_halves(y_1, y_0))
        .split_in_half()
}

pub_test! {
explicit_xx_sub_yy_to_zz<T: PrimitiveUnsigned>(x_1: T, x_0: T, y_1: T, y_0: T) -> (T, T) {
    let (z_0, borrow) = x_0.overflowing_sub(y_0);
    let mut z_1 = x_1.wrapping_sub(y_1);
    if borrow {
        z_1.wrapping_sub_assign(T::ONE);
    }
    (z_1, z_0)
}}

macro_rules! implicit_xx_sub_yy_to_zz {
    ($t:ident, $dt:ident) => {
        impl XXSubYYToZZ for $t {
            /// Subtracts two numbers, each composed of two `Self` values, returning the difference
            /// as a pair of `Self` values.
            ///
            /// The more significant value always comes first. Subtraction is wrapping, and overflow
            /// is not indicated.
            ///
            /// $$
            /// f(x_1, x_0, y_1, y_0) = (z_1, z_0),
            /// $$
            /// where $W$ is `Self::WIDTH`,
            ///
            /// $x_1, x_0, y_1, y_0, z_1, z_0 < 2^W$, and
            /// $$
            /// (2^Wx_1 + x_0) - (2^Wy_1 + y_0) \equiv 2^Wz_1 + z_0 \mod 2^{2W}.
            /// $$
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::xx_sub_yy_to_zz#xx_sub_yy_to_zz).
            ///
            /// This is equivalent to `sub_ddmmss` from `longlong.h`, GMP 6.2.1, where `(sh, sl)` is
            /// returned.
            #[inline]
            fn xx_sub_yy_to_zz(x_1: $t, x_0: $t, y_1: $t, y_0: $t) -> ($t, $t) {
                implicit_xx_sub_yy_to_zz::<$dt>(x_1, x_0, y_1, y_0)
            }
        }
    };
}

implicit_xx_sub_yy_to_zz!(u8, u16);
implicit_xx_sub_yy_to_zz!(u16, u32);
implicit_xx_sub_yy_to_zz!(u32, u64);
implicit_xx_sub_yy_to_zz!(u64, u128);

impl XXSubYYToZZ for usize {
    /// Subtracts two numbers, each composed of two [`usize`] values, returning the difference as a
    /// pair of [`usize`] values.
    ///
    /// The more significant value always comes first. Subtraction is wrapping, and overflow is not
    /// indicated.
    ///
    /// $$
    /// f(x_1, x_0, y_1, y_0) = (z_1, z_0),
    /// $$
    /// where $W$ is `Self::WIDTH`,
    ///
    /// $x_1, x_0, y_1, y_0, z_1, z_0 < 2^W$, and
    /// $$
    /// (2^Wx_1 + x_0) - (2^Wy_1 + y_0) \equiv 2^Wz_1 + z_0 \mod 2^{2W}.
    /// $$
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// See [here](super::xx_sub_yy_to_zz#xx_sub_yy_to_zz).
    ///
    /// This is equivalent to `sub_ddmmss` from `longlong.h`, GMP 6.2.1, where `(sh, sl)` is
    /// returned.
    fn xx_sub_yy_to_zz(x_1: usize, x_0: usize, y_1: usize, y_0: usize) -> (usize, usize) {
        if usize::WIDTH == u32::WIDTH {
            let (z_1, z_0) = u32::xx_sub_yy_to_zz(
                u32::wrapping_from(x_1),
                u32::wrapping_from(x_0),
                u32::wrapping_from(y_1),
                u32::wrapping_from(y_0),
            );
            (usize::wrapping_from(z_1), usize::wrapping_from(z_0))
        } else {
            let (z_1, z_0) = u64::xx_sub_yy_to_zz(
                u64::wrapping_from(x_1),
                u64::wrapping_from(x_0),
                u64::wrapping_from(y_1),
                u64::wrapping_from(y_0),
            );
            (usize::wrapping_from(z_1), usize::wrapping_from(z_0))
        }
    }
}

impl XXSubYYToZZ for u128 {
    /// Subtracts two numbers, each composed of two [`u128`] values, returning the difference as a
    /// pair of [`u128`] values.
    ///
    /// The more significant value always comes first. Subtraction is wrapping, and overflow is not
    /// indicated.
    ///
    /// $$
    /// f(x_1, x_0, y_1, y_0) = (z_1, z_0),
    /// $$
    /// where $W$ is `Self::WIDTH`,
    ///
    /// $x_1, x_0, y_1, y_0, z_1, z_0 < 2^W$, and
    /// $$
    /// (2^Wx_1 + x_0) - (2^Wy_1 + y_0) \equiv 2^Wz_1 + z_0 \mod 2^{2W}.
    /// $$
    ///
    /// # Examples
    /// See [here](super::xx_sub_yy_to_zz#xx_sub_yy_to_zz).
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// This is equivalent to `sub_ddmmss` from `longlong.h`, GMP 6.2.1, where `(sh, sl)` is
    /// returned.
    #[inline]
    fn xx_sub_yy_to_zz(x_1: u128, x_0: u128, y_1: u128, y_0: u128) -> (u128, u128) {
        explicit_xx_sub_yy_to_zz(x_1, x_0, y_1, y_0)
    }
}