1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the GNU MP Library.
//
// Copyright © 1991-1994, 1996, 1997, 1999-2005, 2007-2009, 2011-2020 Free Software
// Foundation, Inc.
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::XXSubYYToZZ;
use crate::num::basic::integers::PrimitiveInt;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::{JoinHalves, SplitInHalf, WrappingFrom};
fn implicit_xx_sub_yy_to_zz<DT: JoinHalves + PrimitiveUnsigned + SplitInHalf>(
x_1: DT::Half,
x_0: DT::Half,
y_1: DT::Half,
y_0: DT::Half,
) -> (DT::Half, DT::Half) {
DT::join_halves(x_1, x_0)
.wrapping_sub(DT::join_halves(y_1, y_0))
.split_in_half()
}
pub_test! {
explicit_xx_sub_yy_to_zz<T: PrimitiveUnsigned>(x_1: T, x_0: T, y_1: T, y_0: T) -> (T, T) {
let (z_0, borrow) = x_0.overflowing_sub(y_0);
let mut z_1 = x_1.wrapping_sub(y_1);
if borrow {
z_1.wrapping_sub_assign(T::ONE);
}
(z_1, z_0)
}}
macro_rules! implicit_xx_sub_yy_to_zz {
($t:ident, $dt:ident) => {
impl XXSubYYToZZ for $t {
/// Subtracts two numbers, each composed of two `Self` values, returning the difference
/// as a pair of `Self` values.
///
/// The more significant value always comes first. Subtraction is wrapping, and overflow
/// is not indicated.
///
/// $$
/// f(x_1, x_0, y_1, y_0) = (z_1, z_0),
/// $$
/// where $W$ is `Self::WIDTH`,
///
/// $x_1, x_0, y_1, y_0, z_1, z_0 < 2^W$, and
/// $$
/// (2^Wx_1 + x_0) - (2^Wy_1 + y_0) \equiv 2^Wz_1 + z_0 \mod 2^{2W}.
/// $$
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::xx_sub_yy_to_zz#xx_sub_yy_to_zz).
///
/// This is equivalent to `sub_ddmmss` from `longlong.h`, GMP 6.2.1, where `(sh, sl)` is
/// returned.
#[inline]
fn xx_sub_yy_to_zz(x_1: $t, x_0: $t, y_1: $t, y_0: $t) -> ($t, $t) {
implicit_xx_sub_yy_to_zz::<$dt>(x_1, x_0, y_1, y_0)
}
}
};
}
implicit_xx_sub_yy_to_zz!(u8, u16);
implicit_xx_sub_yy_to_zz!(u16, u32);
implicit_xx_sub_yy_to_zz!(u32, u64);
implicit_xx_sub_yy_to_zz!(u64, u128);
impl XXSubYYToZZ for usize {
/// Subtracts two numbers, each composed of two [`usize`] values, returning the difference as a
/// pair of [`usize`] values.
///
/// The more significant value always comes first. Subtraction is wrapping, and overflow is not
/// indicated.
///
/// $$
/// f(x_1, x_0, y_1, y_0) = (z_1, z_0),
/// $$
/// where $W$ is `Self::WIDTH`,
///
/// $x_1, x_0, y_1, y_0, z_1, z_0 < 2^W$, and
/// $$
/// (2^Wx_1 + x_0) - (2^Wy_1 + y_0) \equiv 2^Wz_1 + z_0 \mod 2^{2W}.
/// $$
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::xx_sub_yy_to_zz#xx_sub_yy_to_zz).
///
/// This is equivalent to `sub_ddmmss` from `longlong.h`, GMP 6.2.1, where `(sh, sl)` is
/// returned.
fn xx_sub_yy_to_zz(x_1: usize, x_0: usize, y_1: usize, y_0: usize) -> (usize, usize) {
if usize::WIDTH == u32::WIDTH {
let (z_1, z_0) = u32::xx_sub_yy_to_zz(
u32::wrapping_from(x_1),
u32::wrapping_from(x_0),
u32::wrapping_from(y_1),
u32::wrapping_from(y_0),
);
(usize::wrapping_from(z_1), usize::wrapping_from(z_0))
} else {
let (z_1, z_0) = u64::xx_sub_yy_to_zz(
u64::wrapping_from(x_1),
u64::wrapping_from(x_0),
u64::wrapping_from(y_1),
u64::wrapping_from(y_0),
);
(usize::wrapping_from(z_1), usize::wrapping_from(z_0))
}
}
}
impl XXSubYYToZZ for u128 {
/// Subtracts two numbers, each composed of two [`u128`] values, returning the difference as a
/// pair of [`u128`] values.
///
/// The more significant value always comes first. Subtraction is wrapping, and overflow is not
/// indicated.
///
/// $$
/// f(x_1, x_0, y_1, y_0) = (z_1, z_0),
/// $$
/// where $W$ is `Self::WIDTH`,
///
/// $x_1, x_0, y_1, y_0, z_1, z_0 < 2^W$, and
/// $$
/// (2^Wx_1 + x_0) - (2^Wy_1 + y_0) \equiv 2^Wz_1 + z_0 \mod 2^{2W}.
/// $$
///
/// # Examples
/// See [here](super::xx_sub_yy_to_zz#xx_sub_yy_to_zz).
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// This is equivalent to `sub_ddmmss` from `longlong.h`, GMP 6.2.1, where `(sh, sl)` is
/// returned.
#[inline]
fn xx_sub_yy_to_zz(x_1: u128, x_0: u128, y_1: u128, y_0: u128) -> (u128, u128) {
explicit_xx_sub_yy_to_zz(x_1, x_0, y_1, y_0)
}
}