1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::comparison::traits::{Max, Min};
use crate::named::Named;
use crate::num::arithmetic::traits::{
Abs, AbsAssign, AddMul, AddMulAssign, Ceiling, CeilingAssign, CeilingLogBase2,
CeilingLogBasePowerOf2, CheckedLogBase2, CheckedLogBasePowerOf2, Floor, FloorAssign,
FloorLogBase2, FloorLogBasePowerOf2, IsPowerOf2, Ln, NegAssign, NextPowerOf2,
NextPowerOf2Assign, Pow, PowAssign, PowerOf2, Reciprocal, ReciprocalAssign, Sign, Sqrt,
SqrtAssign, Square, SquareAssign, SubMul, SubMulAssign,
};
use crate::num::basic::traits::{
Infinity, NaN, NegativeInfinity, NegativeOne, NegativeZero, One, OneHalf, PrimeConstant,
ThueMorseConstant, Two, Zero,
};
use crate::num::comparison::traits::PartialOrdAbs;
use crate::num::conversion::traits::{
ConvertibleFrom, ExactInto, IntegerMantissaAndExponent, IsInteger, RawMantissaAndExponent,
RoundingFrom, RoundingInto, SciMantissaAndExponent, WrappingFrom,
};
use crate::num::float::FmtRyuString;
use crate::num::logic::traits::{BitAccess, LowMask, SignificantBits, TrailingZeros};
use core::cmp::Ordering::*;
use core::fmt::{Debug, Display, LowerExp, UpperExp};
use core::iter::{Product, Sum};
use core::num::FpCategory;
use core::ops::{
Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign,
};
use core::panic::RefUnwindSafe;
use core::str::FromStr;
/// This trait defines functions on primitive float types: [`f32`] and [`f64`].
///
/// Many of the functions here concern exponents and mantissas. We define three ways to express a
/// float, each with its own exponent and mantissa. In the following, let $x$ be an arbitrary
/// positive, finite, non-zero, non-NaN float. Let $M$ and $E$ be the mantissa width and exponent
/// width of the floating point type; for [`f32`]s, this is 23 and 8, and for [`f64`]s it's 52 and
/// 11.
///
/// In the following we assume that $x$ is positive, but you can easily extend these definitions to
/// negative floats by first taking their absolute value.
///
/// # raw form
/// The raw exponent and raw mantissa are the actual bit patterns used to represent the components
/// of $x$. The raw exponent $e_r$ is an integer in $[0, 2^E-2]$ and the raw mantissa $m_r$ is an
/// integer in $[0, 2^M-1]$. Since we are dealing with a nonzero $x$, we forbid $e_r$ and $m_r$ from
/// both being zero. We have
/// $$
/// x = \\begin{cases}
/// 2^{2-2^{E-1}-M}m_r & \text{if} \quad e_r = 0, \\\\
/// 2^{e_r-2^{E-1}+1}(2^{-M}m_r+1) & \textrm{otherwise},
/// \\end{cases}
/// $$
/// $$
/// e_r = \\begin{cases}
/// 0 & \text{if} \quad x < 2^{2-2^{E-1}}, \\\\
/// \lfloor \log_2 x \rfloor + 2^{E-1} - 1 & \textrm{otherwise},
/// \\end{cases}
/// $$
/// $$
/// m_r = \\begin{cases}
/// 2^{M+2^{E-1}-2}x & \text{if} \quad x < 2^{2-2^{E-1}}, \\\\
/// 2^M \left ( \frac{x}{2^{\lfloor \log_2 x \rfloor}}-1\right ) & \textrm{otherwise}.
/// \\end{cases}
/// $$
///
/// # scientific form
/// We can write $x = 2^{e_s}m_s$, where $e_s$ is an integer and $m_s$ is a rational number with $1
/// \leq m_s < 2$. If $x$ is a valid float, the scientific mantissa $m_s$ is always exactly
/// representable as a float of the same type. We have
/// $$
/// x = 2^{e_s}m_s,
/// $$
/// $$
/// e_s = \lfloor \log_2 x \rfloor,
/// $$
/// $$
/// m_s = \frac{x}{2^{\lfloor \log_2 x \rfloor}}.
/// $$
///
/// # integer form
/// We can also write $x = 2^{e_i}m_i$, where $e_i$ is an integer and $m_i$ is an odd integer. We
/// have
/// $$
/// x = 2^{e_i}m_i,
/// $$
/// $e_i$ is the unique integer such that $x/2^{e_i}$is an odd integer, and
/// $$
/// m_i = \frac{x}{2^{e_i}}.
/// $$
pub trait PrimitiveFloat:
'static
+ Abs<Output = Self>
+ AbsAssign
+ Add<Output = Self>
+ AddAssign<Self>
+ AddMul<Output = Self>
+ AddMulAssign<Self, Self>
+ Ceiling<Output = Self>
+ CeilingAssign
+ CeilingLogBase2<Output = i64>
+ CeilingLogBasePowerOf2<u64, Output = i64>
+ CheckedLogBase2<Output = i64>
+ CheckedLogBasePowerOf2<u64, Output = i64>
+ ConvertibleFrom<u8>
+ ConvertibleFrom<u16>
+ ConvertibleFrom<u32>
+ ConvertibleFrom<u64>
+ ConvertibleFrom<u128>
+ ConvertibleFrom<usize>
+ ConvertibleFrom<i8>
+ ConvertibleFrom<i16>
+ ConvertibleFrom<i32>
+ ConvertibleFrom<i64>
+ ConvertibleFrom<i128>
+ ConvertibleFrom<isize>
+ Copy
+ Debug
+ Default
+ Display
+ Div<Output = Self>
+ DivAssign
+ Floor<Output = Self>
+ FloorAssign
+ FloorLogBase2<Output = i64>
+ FloorLogBasePowerOf2<u64, Output = i64>
+ FmtRyuString
+ From<f32>
+ FromStr
+ Infinity
+ IntegerMantissaAndExponent<u64, i64>
+ Into<f64>
+ IsInteger
+ IsPowerOf2
+ Ln
+ LowerExp
+ Min
+ Max
+ Mul<Output = Self>
+ MulAssign<Self>
+ Named
+ NaN
+ NegativeInfinity
+ NegativeZero
+ Neg<Output = Self>
+ NegAssign
+ NegativeOne
+ NextPowerOf2<Output = Self>
+ NextPowerOf2Assign
+ One
+ PartialEq<Self>
+ PartialOrd<Self>
+ PartialOrdAbs<Self>
+ Pow<i64, Output = Self>
+ Pow<Self, Output = Self>
+ PowAssign<i64>
+ PowAssign<Self>
+ PowerOf2<i64>
+ PrimeConstant
+ Product
+ RawMantissaAndExponent<u64, u64>
+ Reciprocal<Output = Self>
+ ReciprocalAssign
+ RefUnwindSafe
+ Rem<Output = Self>
+ RemAssign<Self>
+ RoundingFrom<u8>
+ RoundingFrom<u16>
+ RoundingFrom<u32>
+ RoundingFrom<u64>
+ RoundingFrom<u128>
+ RoundingFrom<usize>
+ RoundingFrom<i8>
+ RoundingFrom<i16>
+ RoundingFrom<i32>
+ RoundingFrom<i64>
+ RoundingFrom<i128>
+ RoundingFrom<isize>
+ RoundingInto<u8>
+ RoundingInto<u16>
+ RoundingInto<u32>
+ RoundingInto<u64>
+ RoundingInto<u128>
+ RoundingInto<usize>
+ RoundingInto<i8>
+ RoundingInto<i16>
+ RoundingInto<i32>
+ RoundingInto<i64>
+ RoundingInto<i128>
+ RoundingInto<isize>
+ SciMantissaAndExponent<Self, i64>
+ Sign
+ Sized
+ Sqrt<Output = Self>
+ SqrtAssign
+ Square<Output = Self>
+ SquareAssign
+ Sub<Output = Self>
+ SubAssign<Self>
+ SubMul<Output = Self>
+ SubMulAssign<Self, Self>
+ Sum<Self>
+ ThueMorseConstant
+ Two
+ UpperExp
+ Zero
{
/// The number of bits taken up by the type.
///
/// This is $M+E+1$. The three terms in the sum correspond to the width of the mantissa, the
/// width of the exponent, and the sign bit.
/// - For [`f32`]s, this is 32.
/// - For [`f64`]s, this is 64.
const WIDTH: u64;
/// The number of bits taken up by the exponent.
/// - For [`f32`]s, this is 8.
/// - For [`f64`]s, this is 11.
const EXPONENT_WIDTH: u64 = Self::WIDTH - Self::MANTISSA_WIDTH - 1;
/// The number of bits taken up by the mantissa.
/// - For [`f32`]s, this is 23.
/// - For [`f64`]s, this is 52.
const MANTISSA_WIDTH: u64;
/// The smallest possible exponent of a float in the normal range. Any floats with smaller
/// exponents are subnormal and thus have reduced precision. This is $2-2^{E-1}$.
/// - For [`f32`]s, this is -126.
/// - For [`f64`]s, this is -1022.
const MIN_NORMAL_EXPONENT: i64 = -(1 << (Self::EXPONENT_WIDTH - 1)) + 2;
/// The smallest possible exponent of a float. This is $2-2^{E-1}-M$.
/// - For [`f32`]s, this is -149.
/// - For [`f64`]s, this is -1074.
const MIN_EXPONENT: i64 = Self::MIN_NORMAL_EXPONENT - (Self::MANTISSA_WIDTH as i64);
/// The largest possible exponent of a float. This is $2^{E-1}-1$.
/// - For [`f32`]s, this is 127.
/// - For [`f64`]s, this is 1023.
const MAX_EXPONENT: i64 = (1 << (Self::EXPONENT_WIDTH - 1)) - 1;
/// The smallest positive float. This is $2^{2-2^{E-1}-M}$.
/// - For [`f32`]s, this is $2^{-149}$, or `1.0e-45`.
/// - For [`f64`]s, this is $2^{-1074}$, or `5.0e-324`.
const MIN_POSITIVE_SUBNORMAL: Self;
/// The largest float in the subnormal range. This is $2^{2-2^{E-1}-M}(2^M-1)$.
/// - For [`f32`]s, this is $2^{-149}(2^{23}-1)$, or `1.1754942e-38`.
/// - For [`f64`]s, this is $2^{-1074}(2^{52}-1)$, or `2.225073858507201e-308`.
const MAX_SUBNORMAL: Self;
/// The smallest positive normal float. This is $2^{2-2^{E-1}}$.
/// - For [`f32`]s, this is $2^{-126}$, or `1.1754944e-38`.
/// - For [`f64`]s, this is $2^{-1022}$, or `2.2250738585072014e-308`.
const MIN_POSITIVE_NORMAL: Self;
/// The largest finite float. This is $2^{2^{E-1}-1}(2-2^{-M})$.
/// - For [`f32`]s, this is $2^{127}(2-2^{-23})$, or `3.4028235e38`.
/// - For [`f64`]s, this is $2^{1023}(2-2^{-52})$, or `1.7976931348623157e308`.
const MAX_FINITE: Self;
/// The smallest positive integer that cannot be represented as a float. This is $2^{M+1}+1$.
/// - For [`f32`]s, this is $2^{24}+1$, or 16777217.
/// - For [`f64`]s, this is $2^{53}+1$, or 9007199254740993.
const SMALLEST_UNREPRESENTABLE_UINT: u64;
/// If you list all floats in increasing order, excluding NaN and giving negative and positive
/// zero separate adjacent spots, this will be index of the last element, positive infinity. It
/// is $2^{M+1}(2^E-1)+1$.
/// - For [`f32`]s, this is $2^{32}-2^{24}+1$, or 4278190081.
/// - For [`f64`]s, this is $2^{64}-2^{53}+1$, or 18437736874454810625.
const LARGEST_ORDERED_REPRESENTATION: u64;
fn is_nan(self) -> bool;
fn is_infinite(self) -> bool;
fn is_finite(self) -> bool;
fn is_normal(self) -> bool;
fn is_sign_positive(self) -> bool;
fn is_sign_negative(self) -> bool;
fn classify(self) -> FpCategory;
fn to_bits(self) -> u64;
fn from_bits(v: u64) -> Self;
/// Tests whether `self` is negative zero.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::num::basic::floats::PrimitiveFloat;
///
/// assert!((-0.0).is_negative_zero());
/// assert!(!0.0.is_negative_zero());
/// assert!(!1.0.is_negative_zero());
/// assert!(!f32::NAN.is_negative_zero());
/// assert!(!f32::INFINITY.is_negative_zero());
/// ```
#[inline]
fn is_negative_zero(self) -> bool {
self.sign() == Less && self == Self::ZERO
}
/// If `self` is negative zero, returns positive zero; otherwise, returns `self`.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(NiceFloat((-0.0).abs_negative_zero()), NiceFloat(0.0));
/// assert_eq!(NiceFloat(0.0.abs_negative_zero()), NiceFloat(0.0));
/// assert_eq!(NiceFloat(1.0.abs_negative_zero()), NiceFloat(1.0));
/// assert_eq!(NiceFloat((-1.0).abs_negative_zero()), NiceFloat(-1.0));
/// assert_eq!(NiceFloat(f32::NAN.abs_negative_zero()), NiceFloat(f32::NAN));
/// ```
#[inline]
fn abs_negative_zero(self) -> Self {
if self == Self::ZERO {
Self::ZERO
} else {
self
}
}
/// If `self` is negative zero, replaces it with positive zero; otherwise, leaves `self`
/// unchanged.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::float::NiceFloat;
///
/// let mut f = -0.0;
/// f.abs_negative_zero_assign();
/// assert_eq!(NiceFloat(f), NiceFloat(0.0));
///
/// let mut f = 0.0;
/// f.abs_negative_zero_assign();
/// assert_eq!(NiceFloat(f), NiceFloat(0.0));
///
/// let mut f = 1.0;
/// f.abs_negative_zero_assign();
/// assert_eq!(NiceFloat(f), NiceFloat(1.0));
///
/// let mut f = -1.0;
/// f.abs_negative_zero_assign();
/// assert_eq!(NiceFloat(f), NiceFloat(-1.0));
///
/// let mut f = f32::NAN;
/// f.abs_negative_zero_assign();
/// assert_eq!(NiceFloat(f), NiceFloat(f32::NAN));
/// ```
#[inline]
fn abs_negative_zero_assign(&mut self) {
if *self == Self::ZERO {
*self = Self::ZERO;
}
}
/// Returns the smallest float larger than `self`.
///
/// Passing `-0.0` returns `0.0`; passing `NaN` or positive infinity panics.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is `NaN` or positive infinity.
///
/// # Examples
/// ```
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(NiceFloat((-0.0f32).next_higher()), NiceFloat(0.0));
/// assert_eq!(NiceFloat(0.0f32.next_higher()), NiceFloat(1.0e-45));
/// assert_eq!(NiceFloat(1.0f32.next_higher()), NiceFloat(1.0000001));
/// assert_eq!(NiceFloat((-1.0f32).next_higher()), NiceFloat(-0.99999994));
/// ```
fn next_higher(self) -> Self {
assert!(!self.is_nan());
if self.sign() == Greater {
assert_ne!(self, Self::INFINITY);
Self::from_bits(self.to_bits() + 1)
} else if self == Self::ZERO {
// negative zero -> positive zero
Self::ZERO
} else {
Self::from_bits(self.to_bits() - 1)
}
}
/// Returns the largest float smaller than `self`.
///
/// Passing `0.0` returns `-0.0`; passing `NaN` or negative infinity panics.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is `NaN` or negative infinity.
///
/// # Examples
/// ```
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::float::NiceFloat;
///
/// assert_eq!(NiceFloat(0.0f32.next_lower()), NiceFloat(-0.0));
/// assert_eq!(NiceFloat((-0.0f32).next_lower()), NiceFloat(-1.0e-45));
/// assert_eq!(NiceFloat(1.0f32.next_lower()), NiceFloat(0.99999994));
/// assert_eq!(NiceFloat((-1.0f32).next_lower()), NiceFloat(-1.0000001));
/// ```
fn next_lower(self) -> Self {
assert!(!self.is_nan());
if self.sign() == Less {
assert_ne!(self, Self::NEGATIVE_INFINITY);
Self::from_bits(self.to_bits() + 1)
} else if self == Self::ZERO {
// positive zero -> negative zero
Self::NEGATIVE_ZERO
} else {
Self::from_bits(self.to_bits() - 1)
}
}
/// Maps `self` to an integer. The map preserves ordering, and adjacent floats are mapped to
/// adjacent integers.
///
/// Negative infinity is mapped to 0, and positive infinity is mapped to the largest value,
/// [`LARGEST_ORDERED_REPRESENTATION`](PrimitiveFloat::LARGEST_ORDERED_REPRESENTATION). Negative
/// and positive zero are mapped to distinct adjacent values. Passing in `NaN` panics.
///
/// The inverse operation is
/// [`from_ordered_representation`](PrimitiveFloat::from_ordered_representation).
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is `NaN`.
///
/// # Examples
/// ```
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::basic::traits::NegativeInfinity;
///
/// assert_eq!(f32::NEGATIVE_INFINITY.to_ordered_representation(), 0);
/// assert_eq!((-0.0f32).to_ordered_representation(), 2139095040);
/// assert_eq!(0.0f32.to_ordered_representation(), 2139095041);
/// assert_eq!(1.0f32.to_ordered_representation(), 3204448257);
/// assert_eq!(f32::INFINITY.to_ordered_representation(), 4278190081);
/// ```
fn to_ordered_representation(self) -> u64 {
assert!(!self.is_nan());
let bits = self.to_bits();
if self.sign() == Greater {
(u64::low_mask(Self::EXPONENT_WIDTH) << Self::MANTISSA_WIDTH) + bits + 1
} else {
(u64::low_mask(Self::EXPONENT_WIDTH + 1) << Self::MANTISSA_WIDTH) - bits
}
}
/// Maps a non-negative integer, less than or equal to
/// [`LARGEST_ORDERED_REPRESENTATION`](PrimitiveFloat::LARGEST_ORDERED_REPRESENTATION), to a
/// float. The map preserves ordering, and adjacent integers are mapped to adjacent floats.
///
/// Zero is mapped to negative infinity, and
/// [`LARGEST_ORDERED_REPRESENTATION`](PrimitiveFloat::LARGEST_ORDERED_REPRESENTATION) is mapped
/// to positive infinity. Negative and positive zero are produced by two distinct adjacent
/// integers. `NaN` is never produced.
///
/// The inverse operation is
/// [`to_ordered_representation`](PrimitiveFloat::to_ordered_representation).
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is greater than
/// [`LARGEST_ORDERED_REPRESENTATION`](PrimitiveFloat::LARGEST_ORDERED_REPRESENTATION).
///
/// # Examples
/// ```
/// use malachite_base::num::basic::floats::PrimitiveFloat;
/// use malachite_base::num::basic::traits::NegativeInfinity;
///
/// assert_eq!(f32::from_ordered_representation(0), f32::NEGATIVE_INFINITY);
/// assert_eq!(f32::from_ordered_representation(2139095040), -0.0f32);
/// assert_eq!(f32::from_ordered_representation(2139095041), 0.0f32);
/// assert_eq!(f32::from_ordered_representation(3204448257), 1.0f32);
/// assert_eq!(f32::from_ordered_representation(4278190081), f32::INFINITY);
/// ```
fn from_ordered_representation(n: u64) -> Self {
let zero_exp = u64::low_mask(Self::EXPONENT_WIDTH) << Self::MANTISSA_WIDTH;
let f = if n <= zero_exp {
Self::from_bits((u64::low_mask(Self::EXPONENT_WIDTH + 1) << Self::MANTISSA_WIDTH) - n)
} else {
let f = Self::from_bits(n - zero_exp - 1);
assert_eq!(f.sign(), Greater);
f
};
assert!(!f.is_nan());
f
}
/// Returns the precision of a nonzero finite floating-point number.
///
/// The precision is the number of significant bits of the integer mantissa. For example, the
/// floats with precision 1 are the powers of 2, those with precision 2 are 3 times a power of
/// 2, those with precision 3 are 5 or 7 times a power of 2, and so on.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `self` is zero, infinite, or `NaN`.
///
/// # Examples
/// ```
/// use malachite_base::num::basic::floats::PrimitiveFloat;
///
/// assert_eq!(1.0.precision(), 1);
/// assert_eq!(2.0.precision(), 1);
/// assert_eq!(3.0.precision(), 2);
/// assert_eq!(1.5.precision(), 2);
/// assert_eq!(1.234f32.precision(), 23);
/// ```
fn precision(self) -> u64 {
assert!(self.is_finite());
assert!(self != Self::ZERO);
let (mut mantissa, exponent) = self.raw_mantissa_and_exponent();
if exponent == 0 {
mantissa.significant_bits() - TrailingZeros::trailing_zeros(mantissa)
} else {
mantissa.set_bit(Self::MANTISSA_WIDTH);
Self::MANTISSA_WIDTH + 1 - TrailingZeros::trailing_zeros(mantissa)
}
}
/// Given a scientific exponent, returns the largest possible precision for a float with that
/// exponent.
///
/// See the documentation of the [`precision`](PrimitiveFloat::precision) function for a
/// definition of precision.
///
/// For exponents greater than or equal to
/// [`MIN_NORMAL_EXPONENT`](PrimitiveFloat::MIN_NORMAL_EXPONENT), the maximum precision is one
/// more than the mantissa width. For smaller exponents (corresponding to the subnormal range),
/// the precision is lower.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `exponent` is less than [`MIN_EXPONENT`](PrimitiveFloat::MIN_EXPONENT) or greater
/// than [`MAX_EXPONENT`](PrimitiveFloat::MAX_EXPONENT).
///
/// # Examples
/// ```
/// use malachite_base::num::basic::floats::PrimitiveFloat;
///
/// assert_eq!(f32::max_precision_for_sci_exponent(0), 24);
/// assert_eq!(f32::max_precision_for_sci_exponent(127), 24);
/// assert_eq!(f32::max_precision_for_sci_exponent(-149), 1);
/// assert_eq!(f32::max_precision_for_sci_exponent(-148), 2);
/// assert_eq!(f32::max_precision_for_sci_exponent(-147), 3);
/// ```
fn max_precision_for_sci_exponent(exponent: i64) -> u64 {
assert!(exponent >= Self::MIN_EXPONENT);
assert!(exponent <= Self::MAX_EXPONENT);
if exponent >= Self::MIN_NORMAL_EXPONENT {
Self::MANTISSA_WIDTH + 1
} else {
u64::wrapping_from(exponent - Self::MIN_EXPONENT) + 1
}
}
}
/// Defines basic trait implementations for floating-point types.
macro_rules! impl_basic_traits_primitive_float {
(
$t: ident,
$width: expr,
$min_positive_subnormal: expr,
$max_subnormal: expr,
$min_positive_normal: expr,
$thue_morse_constant: expr,
$prime_constant: expr
) => {
impl PrimitiveFloat for $t {
const WIDTH: u64 = $width;
const MANTISSA_WIDTH: u64 = ($t::MANTISSA_DIGITS as u64) - 1;
const MAX_FINITE: Self = $t::MAX;
const MIN_POSITIVE_SUBNORMAL: Self = $min_positive_subnormal;
const MAX_SUBNORMAL: Self = $max_subnormal;
const MIN_POSITIVE_NORMAL: Self = $min_positive_normal;
const SMALLEST_UNREPRESENTABLE_UINT: u64 = (1 << (Self::MANTISSA_WIDTH + 1)) + 1;
// We can't shift by $width when $width is 64, so we shift by $width - 1 and then by 1
const LARGEST_ORDERED_REPRESENTATION: u64 = (1u64 << ($width - 1) << 1)
.wrapping_sub(((1 << Self::MANTISSA_WIDTH) - 1) << 1)
- 1;
#[inline]
fn is_nan(self) -> bool {
$t::is_nan(self)
}
#[inline]
fn is_infinite(self) -> bool {
$t::is_infinite(self)
}
#[inline]
fn is_finite(self) -> bool {
$t::is_finite(self)
}
#[inline]
fn is_normal(self) -> bool {
$t::is_normal(self)
}
#[inline]
fn is_sign_positive(self) -> bool {
$t::is_sign_positive(self)
}
#[inline]
fn is_sign_negative(self) -> bool {
$t::is_sign_negative(self)
}
#[inline]
fn classify(self) -> FpCategory {
$t::classify(self)
}
#[inline]
fn to_bits(self) -> u64 {
u64::wrapping_from($t::to_bits(self))
}
#[inline]
fn from_bits(v: u64) -> $t {
$t::from_bits(v.exact_into())
}
}
impl_named!($t);
/// The constant 0.
impl Zero for $t {
const ZERO: $t = 0.0;
}
/// The constant 1.
impl One for $t {
const ONE: $t = 1.0;
}
/// The constant 2.
impl Two for $t {
const TWO: $t = 2.0;
}
/// The constant 1/2.
impl OneHalf for $t {
const ONE_HALF: $t = 0.5;
}
/// The constant -1.0 for primitive floating-point types.
impl NegativeOne for $t {
const NEGATIVE_ONE: $t = -1.0;
}
/// The constant -0.0 for primitive floating-point types.
impl NegativeZero for $t {
const NEGATIVE_ZERO: $t = -0.0;
}
/// The constant Infinity for primitive floating-point types.
impl Infinity for $t {
const INFINITY: $t = $t::INFINITY;
}
/// The constant -Infinity for primitive floating-point types.
impl NegativeInfinity for $t {
const NEGATIVE_INFINITY: $t = $t::NEG_INFINITY;
}
/// The constant NaN for primitive floating-point types.
impl NaN for $t {
const NAN: $t = $t::NAN;
}
/// The lowest value representable by this type, negative infinity.
impl Min for $t {
const MIN: $t = $t::NEGATIVE_INFINITY;
}
/// The highest value representable by this type, positive infinity.
impl Max for $t {
const MAX: $t = $t::INFINITY;
}
/// The Thue-Morse constant.
impl ThueMorseConstant for $t {
const THUE_MORSE_CONSTANT: $t = $thue_morse_constant;
}
/// The prime constant.
impl PrimeConstant for $t {
const PRIME_CONSTANT: $t = $prime_constant;
}
};
}
impl_basic_traits_primitive_float!(
f32,
32,
1.0e-45,
1.1754942e-38,
1.1754944e-38,
0.41245404,
0.4146825
);
impl_basic_traits_primitive_float!(
f64,
64,
5.0e-324,
2.225073858507201e-308,
2.2250738585072014e-308,
0.4124540336401076,
0.41468250985111166
);