1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{DivRound, SaturatingSubAssign};
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::{
ExactFrom, PowerOf2DigitIterable, PowerOf2DigitIterator, WrappingFrom,
};
use crate::num::logic::traits::BitBlockAccess;
use crate::rounding_modes::RoundingMode::*;
use core::marker::PhantomData;
/// A double-ended iterator over the base-$2^k$ digits of an unsigned primitive integer.
///
/// This `struct` is created by the [`PowerOf2DigitIterable::power_of_2_digits`] function. See its
/// documentation for more.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct PrimitivePowerOf2DigitIterator<T: PrimitiveUnsigned, U: PrimitiveUnsigned> {
pub(crate) value: T,
pub(crate) log_base: u64,
pub(crate) remaining: usize,
// If `n` is nonzero, this index initially points to the least-significant bit of the least-
// significant digit, and is left-shifted by `next`.
pub(crate) i: u64,
// If `n` is nonzero, this mask initially points to the least-significant bit of the most-
// significant nonzero digit, and is right-shifted by `next_back`.
pub(crate) j: u64,
phantom: PhantomData<*const U>,
}
impl<T: PrimitiveUnsigned, U: PrimitiveUnsigned + WrappingFrom<<T as BitBlockAccess>::Bits>>
Iterator for PrimitivePowerOf2DigitIterator<T, U>
{
type Item = U;
fn next(&mut self) -> Option<U> {
if self.remaining != 0 {
let digit = U::wrapping_from(self.value.get_bits(self.i, self.i + self.log_base));
self.i += self.log_base;
self.remaining -= 1;
Some(digit)
} else {
None
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.remaining, Some(self.remaining))
}
}
impl<T: PrimitiveUnsigned, U: PrimitiveUnsigned + WrappingFrom<<T as BitBlockAccess>::Bits>>
DoubleEndedIterator for PrimitivePowerOf2DigitIterator<T, U>
{
fn next_back(&mut self) -> Option<U> {
if self.remaining != 0 {
let digit = U::wrapping_from(self.value.get_bits(self.j, self.j + self.log_base));
self.j.saturating_sub_assign(self.log_base);
self.remaining -= 1;
Some(digit)
} else {
None
}
}
}
impl<T: PrimitiveUnsigned, U: PrimitiveUnsigned + WrappingFrom<<T as BitBlockAccess>::Bits>>
ExactSizeIterator for PrimitivePowerOf2DigitIterator<T, U>
{
}
impl<T: PrimitiveUnsigned, U: PrimitiveUnsigned + WrappingFrom<<T as BitBlockAccess>::Bits>>
PowerOf2DigitIterator<U> for PrimitivePowerOf2DigitIterator<T, U>
{
/// Retrieves base-$2^k$ digits by index.
///
/// Indexing at or above the significant digit count returns zero.
///
/// This function doesn't affect, and isn't affected by, the iterator's position.
///
/// $f(x, k, i) = d_i$, where $0 \leq d_i < 2^k$ for all $i$ and
/// $$
/// \sum_{i=0}^\infty2^{ki}d_i = x.
/// $$
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// ```
/// use malachite_base::num::conversion::traits::{
/// PowerOf2DigitIterable, PowerOf2DigitIterator,
/// };
///
/// let digits = PowerOf2DigitIterable::<u8>::power_of_2_digits(0u8, 2);
/// assert_eq!(digits.get(0), 0);
///
/// // 107 = 1101011b
/// let digits = PowerOf2DigitIterable::<u8>::power_of_2_digits(107u32, 2);
/// assert_eq!(digits.get(0), 3);
/// assert_eq!(digits.get(1), 2);
/// assert_eq!(digits.get(2), 2);
/// assert_eq!(digits.get(100), 0);
/// ```
fn get(&self, index: u64) -> U {
let i = index * self.log_base;
U::wrapping_from(self.value.get_bits(i, i + self.log_base))
}
}
fn power_of_2_digits<T: PrimitiveUnsigned, U: PrimitiveUnsigned>(
x: T,
log_base: u64,
) -> PrimitivePowerOf2DigitIterator<T, U> {
assert_ne!(log_base, 0);
assert!(
log_base <= U::WIDTH,
"type {:?} is too small for a digit of width {}",
U::NAME,
log_base
);
let significant_digits = x.significant_bits().div_round(log_base, Ceiling).0;
PrimitivePowerOf2DigitIterator {
value: x,
log_base,
remaining: usize::exact_from(significant_digits),
i: 0,
j: significant_digits.saturating_sub(1) * log_base,
phantom: PhantomData,
}
}
macro_rules! impl_power_of_2_digit_iterable {
($t:ident) => {
macro_rules! impl_power_of_2_digit_iterable_inner {
($u:ident) => {
impl PowerOf2DigitIterable<$u> for $t {
type PowerOf2DigitIterator = PrimitivePowerOf2DigitIterator<$t, $u>;
/// Returns a double-ended iterator over the base-$2^k$ digits of a primitive
/// unsigned integer.
///
/// The forward order is ascending, so that less-significant digits appear
/// first. There are no trailing zeros going forward, or leading zeros going
/// backward.
///
/// If it's necessary to get a [`Vec`] of all the digits, consider using
/// [`to_power_of_2_digits_asc`](super::super::traits::PowerOf2Digits::to_power_of_2_digits_asc)
/// or
/// [`to_power_of_2_digits_desc`](super::super::traits::PowerOf2Digits::to_power_of_2_digits_desc)
/// instead.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `log_base` is larger than the width of output type width.
///
/// # Examples
/// See [here](super::power_of_2_digit_iterable#power_of_2_digits).
#[inline]
fn power_of_2_digits(
self,
log_base: u64,
) -> PrimitivePowerOf2DigitIterator<$t, $u> {
power_of_2_digits(self, log_base)
}
}
};
}
apply_to_unsigneds!(impl_power_of_2_digit_iterable_inner);
};
}
apply_to_unsigneds!(impl_power_of_2_digit_iterable);