1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::{PowerOf2Digits, WrappingFrom};
use alloc::vec::Vec;
fn to_power_of_2_digits_asc<T: PrimitiveUnsigned, U: PrimitiveUnsigned + WrappingFrom<T>>(
x: &T,
log_base: u64,
) -> Vec<U> {
assert_ne!(log_base, 0);
assert!(
log_base <= U::WIDTH,
"type {:?} is too small for a digit of width {}",
U::NAME,
log_base
);
let mut digits = Vec::new();
if *x == T::ZERO {
} else if x.significant_bits() <= log_base {
digits.push(U::wrapping_from(*x));
} else {
let mut x = *x;
let mask = U::low_mask(log_base);
while x != T::ZERO {
digits.push(U::wrapping_from(x) & mask);
x >>= log_base;
}
}
digits
}
fn to_power_of_2_digits_desc<T: PrimitiveUnsigned, U: PrimitiveUnsigned + WrappingFrom<T>>(
x: &T,
log_base: u64,
) -> Vec<U> {
let mut digits = to_power_of_2_digits_asc(x, log_base);
digits.reverse();
digits
}
fn from_power_of_2_digits_asc<
T: TryFrom<U> + PrimitiveUnsigned + WrappingFrom<U>,
U: PrimitiveUnsigned,
I: Iterator<Item = U>,
>(
log_base: u64,
digits: I,
) -> Option<T> {
assert_ne!(log_base, 0);
assert!(
log_base <= U::WIDTH,
"type {:?} is too small for a digit of width {}",
U::NAME,
log_base
);
let mut n = T::ZERO;
let mut shift = 0;
for digit in digits {
if digit.significant_bits() > log_base {
return None;
}
n |= T::try_from(digit)
.ok()
.and_then(|d| d.arithmetic_checked_shl(shift))?;
shift += log_base;
}
Some(n)
}
fn from_power_of_2_digits_desc<
T: PrimitiveUnsigned + WrappingFrom<U>,
U: PrimitiveUnsigned,
I: Iterator<Item = U>,
>(
log_base: u64,
digits: I,
) -> Option<T> {
assert_ne!(log_base, 0);
assert!(
log_base <= U::WIDTH,
"type {:?} is too small for a digit of width {}",
U::NAME,
log_base
);
let mut n = T::ZERO;
for digit in digits {
if digit.significant_bits() > log_base {
return None;
}
let shifted = n.arithmetic_checked_shl(log_base)?;
n = shifted | T::wrapping_from(digit);
}
Some(n)
}
macro_rules! impl_power_of_2_digits {
($t:ident) => {
macro_rules! impl_power_of_2_digits_inner {
($u:ident) => {
impl PowerOf2Digits<$u> for $t {
/// Returns a [`Vec`] containing the base-$2^k$ digits of a number in ascending
/// order (least- to most-significant).
///
/// The base-2 logarithm of the base is specified. `log_base` must be no larger
/// than the width of the digit type. If `self` is 0, the [`Vec`] is empty;
/// otherwise, it ends with a nonzero digit.
///
/// $f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$
/// or $d_{n-1} \neq 0$, and
///
/// $$
/// \sum_{i=0}^{n-1}2^{ki}d_i = x.
/// $$
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is
/// `self.significant_bits()`.
///
/// # Panics
/// Panics if `log_base` is greater than the width of the output type, or if
/// `log_base` is zero.
///
/// # Examples
/// See [here](super::power_of_2_digits#to_power_of_2_digits_asc).
#[inline]
fn to_power_of_2_digits_asc(&self, log_base: u64) -> Vec<$u> {
to_power_of_2_digits_asc(self, log_base)
}
/// Returns a [`Vec`] containing the base-$2^k$ digits of a number in descending
/// order (most- to least-significant).
///
/// The base-2 logarithm of the base is specified. `log_base` must be no larger
/// than the width of the digit type. If `self` is 0, the [`Vec`] is empty;
/// otherwise, it begins with a nonzero digit.
///
/// $f(x, k) = (d_i)_ {i=0}^{n-1}$, where $0 \leq d_i < 2^k$ for all $i$, $n=0$
/// or $d_0 \neq 0$, and
///
/// $$
/// \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i = x.
/// $$
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is
/// `self.significant_bits()`.
///
/// # Panics
/// Panics if `log_base` is greater than the width of the output type, or if
/// `log_base` is zero.
///
/// # Examples
/// See [here](super::power_of_2_digits#to_power_of_2_digits_desc).
#[inline]
fn to_power_of_2_digits_desc(&self, log_base: u64) -> Vec<$u> {
to_power_of_2_digits_desc(self, log_base)
}
/// Converts an iterator of base-$2^k$ digits into a value.
///
/// The base-2 logarithm of the base is specified. The input digits are in
/// ascending order (least- to most-significant). `log_base` must be no larger
/// than the width of the digit type. The function returns `None` if the input
/// represents a number that can't fit in the output type.
///
/// $$
/// f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{ki}d_i.
/// $$
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `digits.count()`.
///
/// # Panics
/// Panics if `log_base` is greater than the width of the digit type, or if
/// `log_base` is zero.
///
/// # Examples
/// See [here](super::power_of_2_digits#from_power_of_2_digits_asc).
#[inline]
fn from_power_of_2_digits_asc<I: Iterator<Item = $u>>(
log_base: u64,
digits: I,
) -> Option<$t> {
from_power_of_2_digits_asc(log_base, digits)
}
/// Converts an iterator of base-$2^k$ digits into a value.
///
/// The base-2 logarithm of the base is specified. The input digits are in
/// descending order (most- to least-significant). `log_base` must be no larger
/// than the width of the digit type. The function returns `None` if the input
/// represents a number that can't fit in the output type.
///
/// $$
/// f((d_i)_ {i=0}^{n-1}, k) = \sum_{i=0}^{n-1}2^{k (n-i-1)}d_i.
/// $$
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `digits.count()`.
///
/// # Panics
/// Panics if `log_base` is greater than the width of the digit type, or if
/// `log_base` is zero.
///
/// # Examples
/// See [here](super::power_of_2_digits#from_power_of_2_digits_desc).
fn from_power_of_2_digits_desc<I: Iterator<Item = $u>>(
log_base: u64,
digits: I,
) -> Option<$t> {
from_power_of_2_digits_desc(log_base, digits)
}
}
};
}
apply_to_unsigneds!(impl_power_of_2_digits_inner);
};
}
apply_to_unsigneds!(impl_power_of_2_digits);