1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::arithmetic::traits::{ShrRoundAssign, UnsignedAbs};
use crate::num::basic::floats::PrimitiveFloat;
use crate::num::basic::integers::PrimitiveInt;
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::mantissa_and_exponent::sci_mantissa_and_exponent_round;
use crate::num::conversion::traits::{
    ConvertibleFrom, OverflowingFrom, RoundingFrom, SaturatingFrom, SciMantissaAndExponent,
    WrappingFrom,
};
use crate::num::float::NiceFloat;
use crate::rounding_modes::RoundingMode::{self, *};
use core::cmp::Ordering::{self, *};
use core::ops::Neg;

// This macro defines conversions from a type to itself.
macro_rules! identity_conversion {
    ($t:ty) => {
        impl WrappingFrom<$t> for $t {
            /// Converts a value to its own type. This conversion is always valid and always leaves
            /// the value unchanged.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from#wrapping_from).
            #[inline]
            fn wrapping_from(value: $t) -> $t {
                value
            }
        }

        impl SaturatingFrom<$t> for $t {
            /// Converts a value to its own type. This conversion is always valid and always leaves
            /// the value unchanged.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from#saturating_from).
            #[inline]
            fn saturating_from(value: $t) -> $t {
                value
            }
        }

        impl OverflowingFrom<$t> for $t {
            /// Converts a value to its own type. Since this conversion is always valid and always
            /// leaves the value unchanged, the second component of the result is always false (no
            /// overflow).
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from#overflowing_from).
            #[inline]
            fn overflowing_from(value: $t) -> ($t, bool) {
                (value, false)
            }
        }

        impl ConvertibleFrom<$t> for $t {
            /// Checks whether a value is convertible to its own type. The result is always `true`.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from#convertible_from).
            #[inline]
            fn convertible_from(_: $t) -> bool {
                true
            }
        }
    };
}

// This macro defines conversions from type $a to type $b, where every value of type $a is
// representable by a value of type $b.
macro_rules! lossless_conversion {
    ($a:ty, $b:ident) => {
        impl WrappingFrom<$a> for $b {
            /// Converts a value to another type. This conversion is always valid and always leaves
            /// the value unchanged.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from#wrapping_from).
            #[inline]
            fn wrapping_from(value: $a) -> $b {
                $b::from(value)
            }
        }

        impl SaturatingFrom<$a> for $b {
            /// Converts a value to another type. This conversion is always valid and always leaves
            /// the value unchanged.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from#saturating_from).
            #[inline]
            fn saturating_from(value: $a) -> $b {
                $b::from(value)
            }
        }

        impl OverflowingFrom<$a> for $b {
            /// Converts a value to the value's type. Since this conversion is always valid and
            /// always leaves the value unchanged, the second component of the result is always
            /// false (no overflow).
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from#overflowing_from).
            #[inline]
            fn overflowing_from(value: $a) -> ($b, bool) {
                ($b::from(value), false)
            }
        }

        impl ConvertibleFrom<$a> for $b {
            /// Checks whether a value is convertible to a different type. The result is always
            /// `true`.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from#convertible_from).
            #[inline]
            fn convertible_from(_: $a) -> bool {
                true
            }
        }
    };
}

fn saturating_from_lossy<A: TryFrom<B> + PrimitiveInt, B: PrimitiveInt + WrappingFrom<A>>(
    value: A,
) -> B {
    if let Ok(b_max) = A::try_from(B::MAX) {
        if value >= b_max {
            return B::MAX;
        }
    }
    if let Ok(b_min) = A::try_from(B::MIN) {
        if value <= b_min {
            return B::MIN;
        }
    }
    B::wrapping_from(value)
}

fn overflowing_from_lossy<A: PrimitiveInt + WrappingFrom<B>, B: PrimitiveInt + WrappingFrom<A>>(
    value: A,
) -> (B, bool) {
    let result = B::wrapping_from(value);
    (
        result,
        (result >= B::ZERO) != (value >= A::ZERO) || A::wrapping_from(result) != value,
    )
}

fn convertible_from_lossy<A: PrimitiveInt + WrappingFrom<B>, B: PrimitiveInt + WrappingFrom<A>>(
    value: A,
) -> bool {
    let result = B::wrapping_from(value);
    (result >= B::ZERO) == (value >= A::ZERO) && A::wrapping_from(result) == value
}

// This macro defines conversions from type $a to type $b, where not every value of type $a is
// representable by a value of type $b.
macro_rules! lossy_conversion {
    ($a:ident, $b:ident) => {
        #[allow(clippy::cast_lossless)]
        impl WrappingFrom<$a> for $b {
            /// Converts a value to another type. If the value cannot be represented in the new
            /// type, it is wrapped.
            ///
            /// Let $W$ be the width of the target type.
            ///
            /// If the target type is unsigned, then $f_W(n) = m$, where $m < 2^W$ and $n + 2^W k =
            /// m$ for some $k \in \Z$.
            ///
            /// If the target type is signed, then $f_W(n) = m$, where $-2^{W-1} \leq m < 2^{W-1}$
            /// and $n + 2^W k = m$ for some $k \in \Z$.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from#wrapping_from).
            #[inline]
            fn wrapping_from(value: $a) -> $b {
                value as $b
            }
        }

        impl SaturatingFrom<$a> for $b {
            /// Converts a value to another type. If the value cannot be represented in the new
            /// type, the maximum or minimum value of the new type, whichever is closer, is
            /// returned.
            ///
            /// Let $W$ be the width of the target type.
            ///
            /// If the target type is unsigned, then
            /// $$
            /// f_W(n) = \\begin{cases}
            ///     0 & n < 0 \\\\
            ///     2^W-1 & \text{if} \\quad n \geq 2^W, \\\\
            ///     n & \\text{otherwise}.
            /// \\end{cases}
            /// $$
            ///
            /// If the target type is signed, then
            /// $$
            /// f_W(n) = \\begin{cases}
            ///     -2^{W-1} & \text{if} \\quad n < -2^{W-1}, \\\\
            ///     2^{W-1}-1 & \text{if} \\quad n \geq 2^{W-1}, \\\\
            ///     n & \\text{otherwise}.
            /// \\end{cases}
            /// $$
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from#saturating_from).
            #[inline]
            fn saturating_from(value: $a) -> $b {
                saturating_from_lossy(value)
            }
        }

        impl OverflowingFrom<$a> for $b {
            /// Converts a value to another type. If the value cannot be represented in the new
            /// type, it is wrapped. The second component of the result indicates whether overflow
            /// occurred.
            ///
            /// Let $W$ be the width of the target type.
            ///
            /// If the target type is unsigned, then $f_W(n) = (m, k \neq 0)$, where $m < 2^W$ and
            /// $n + 2^W k = m$ for some $k \in \Z$.
            ///
            /// If the target type is signed, then $f_W(n) = (m, k \neq 0)$, where $-2^{W-1} \leq m
            /// < 2^{W-1}$ and $n + 2^W k = m$ for some $k \in \Z$.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from#overflowing_from).
            #[inline]
            fn overflowing_from(value: $a) -> ($b, bool) {
                overflowing_from_lossy(value)
            }
        }

        impl ConvertibleFrom<$a> for $b {
            /// Determines whether a value is convertible to a different type.
            ///
            /// Let $W$ be the width of the target type.
            ///
            /// If the target type is unsigned then,
            /// $$
            /// f_W(n) = (0 \leq n < 2^W).
            /// $$
            ///
            /// If the target type is signed then,
            /// $$
            /// f_W(n) = (-2^{W-1} \leq n < 2^{W-1}-1).
            /// $$
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::from#convertible_from).
            #[inline]
            fn convertible_from(value: $a) -> bool {
                convertible_from_lossy::<$a, $b>(value)
            }
        }
    };
}

// This macro defines conversions from type $a to type $b, where the set of values representable by
// type $a is a proper subset of the set of values representable by type $b.
macro_rules! proper_subset_conversion {
    ($a:ident, $b:ident) => {
        lossless_conversion!($a, $b);
        lossy_conversion!($b, $a);
    };
}

// This macro defines conversions from type $a to type $b, where the set of values representable by
// type $a is neither a subset nor a superset of the set of values representable by type $b.
macro_rules! no_containment_conversion {
    ($a:ident, $b:ident) => {
        lossy_conversion!($a, $b);
        lossy_conversion!($b, $a);
    };
}

apply_to_primitive_ints!(identity_conversion);

proper_subset_conversion!(u8, u16);
proper_subset_conversion!(u8, u32);
proper_subset_conversion!(u8, u64);
proper_subset_conversion!(u8, u128);
proper_subset_conversion!(u8, usize);
proper_subset_conversion!(u8, i16);
proper_subset_conversion!(u8, i32);
proper_subset_conversion!(u8, i64);
proper_subset_conversion!(u8, i128);
proper_subset_conversion!(u8, isize);
proper_subset_conversion!(u16, u32);
proper_subset_conversion!(u16, u64);
proper_subset_conversion!(u16, u128);
proper_subset_conversion!(u16, usize);
proper_subset_conversion!(u16, i32);
proper_subset_conversion!(u16, i64);
proper_subset_conversion!(u16, i128);
proper_subset_conversion!(u32, u64);
proper_subset_conversion!(u32, u128);
proper_subset_conversion!(u32, i64);
proper_subset_conversion!(u32, i128);
proper_subset_conversion!(u64, u128);
proper_subset_conversion!(u64, i128);
proper_subset_conversion!(i8, i16);
proper_subset_conversion!(i8, i32);
proper_subset_conversion!(i8, i64);
proper_subset_conversion!(i8, i128);
proper_subset_conversion!(i8, isize);
proper_subset_conversion!(i16, i32);
proper_subset_conversion!(i16, i64);
proper_subset_conversion!(i16, i128);
proper_subset_conversion!(i16, isize);
proper_subset_conversion!(i32, i64);
proper_subset_conversion!(i32, i128);
proper_subset_conversion!(i64, i128);

no_containment_conversion!(u8, i8);
no_containment_conversion!(u16, i8);
no_containment_conversion!(u16, i16);
no_containment_conversion!(u16, isize);
no_containment_conversion!(u32, usize);
no_containment_conversion!(u32, i8);
no_containment_conversion!(u32, i16);
no_containment_conversion!(u32, i32);
no_containment_conversion!(u32, isize);
no_containment_conversion!(u64, usize);
no_containment_conversion!(u64, i8);
no_containment_conversion!(u64, i16);
no_containment_conversion!(u64, i32);
no_containment_conversion!(u64, i64);
no_containment_conversion!(u64, isize);
no_containment_conversion!(u128, usize);
no_containment_conversion!(u128, i8);
no_containment_conversion!(u128, i16);
no_containment_conversion!(u128, i32);
no_containment_conversion!(u128, i64);
no_containment_conversion!(u128, i128);
no_containment_conversion!(u128, isize);
no_containment_conversion!(usize, i8);
no_containment_conversion!(usize, i16);
no_containment_conversion!(usize, i32);
no_containment_conversion!(usize, i64);
no_containment_conversion!(usize, i128);
no_containment_conversion!(usize, isize);
no_containment_conversion!(i32, isize);
no_containment_conversion!(i64, isize);
no_containment_conversion!(i128, isize);

fn primitive_float_rounding_from_unsigned<T: PrimitiveFloat, U: PrimitiveUnsigned>(
    value: U,
    rm: RoundingMode,
) -> (T, Ordering) {
    if value == U::ZERO {
        return (T::ZERO, Equal);
    }
    let (mantissa, exponent, o) = sci_mantissa_and_exponent_round(value, rm).unwrap();
    if let Some(f) = T::from_sci_mantissa_and_exponent(mantissa, i64::wrapping_from(exponent)) {
        (f, o)
    } else {
        match rm {
            Exact => {
                panic!("Value cannot be represented exactly as an {}", T::NAME)
            }
            Floor | Down | Nearest => (T::MAX_FINITE, Less),
            _ => (T::INFINITY, Greater),
        }
    }
}

fn unsigned_rounding_from_primitive_float<T: PrimitiveUnsigned, U: PrimitiveFloat>(
    value: U,
    rm: RoundingMode,
) -> (T, Ordering) {
    assert!(!value.is_nan());
    if value.is_infinite() {
        return if value.is_sign_positive() {
            match rm {
                Exact => {
                    panic!("Value cannot be represented exactly as a {}", T::NAME)
                }
                Down | Floor | Nearest => (T::MAX, Less),
                _ => panic!("Cannot round away from positive infinity"),
            }
        } else {
            match rm {
                Exact => {
                    panic!("Value cannot be represented exactly as a {}", T::NAME)
                }
                Down | Ceiling | Nearest => (T::ZERO, Greater),
                _ => panic!("Cannot round away from negative infinity"),
            }
        };
    }
    if value == U::ZERO {
        return (T::ZERO, Equal);
    }
    if value.is_sign_negative() {
        return match rm {
            Exact => {
                panic!("Value cannot be represented exactly as a {}", T::NAME)
            }
            Ceiling | Down | Nearest => (T::ZERO, Greater),
            _ => panic!("Value is less than 0 and rounding mode is {rm}"),
        };
    }
    let (mut mantissa, exponent) = value.integer_mantissa_and_exponent();
    let (result, o) = if exponent <= 0 {
        let o = mantissa.shr_round_assign(-exponent, rm);
        (T::try_from(mantissa).ok(), o)
    } else {
        (
            T::try_from(mantissa)
                .ok()
                .and_then(|n| n.arithmetic_checked_shl(exponent)),
            Equal,
        )
    };
    if let Some(n) = result {
        (n, o)
    } else {
        match rm {
            Exact => {
                panic!("Value cannot be represented exactly as a {}", T::NAME)
            }
            Floor | Down | Nearest => (T::MAX, Less),
            _ => panic!(
                "Value is greater than {}::MAX and rounding mode is {}",
                T::NAME,
                rm
            ),
        }
    }
}

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct PrimitiveFloatFromUnsignedError;

fn primitive_float_try_from_unsigned<T: PrimitiveFloat, U: PrimitiveUnsigned>(
    value: U,
) -> Result<T, PrimitiveFloatFromUnsignedError> {
    if value == U::ZERO {
        return Ok(T::ZERO);
    }
    let (mantissa, exponent, _) =
        sci_mantissa_and_exponent_round(value, Exact).ok_or(PrimitiveFloatFromUnsignedError)?;
    T::from_sci_mantissa_and_exponent(mantissa, i64::wrapping_from(exponent))
        .ok_or(PrimitiveFloatFromUnsignedError)
}

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum UnsignedFromFloatError {
    FloatInfiniteOrNan,
    FloatNegative,
    FloatNonIntegerOrOutOfRange,
}

fn unsigned_try_from_primitive_float<T: PrimitiveUnsigned, U: PrimitiveFloat>(
    value: U,
) -> Result<T, UnsignedFromFloatError> {
    if !value.is_finite() {
        Err(UnsignedFromFloatError::FloatInfiniteOrNan)
    } else if value == U::ZERO {
        Ok(T::ZERO)
    } else if value < U::ZERO {
        Err(UnsignedFromFloatError::FloatNegative)
    } else {
        let (mantissa, exponent) = value.integer_mantissa_and_exponent();
        if exponent < 0 {
            Err(UnsignedFromFloatError::FloatNonIntegerOrOutOfRange)
        } else {
            T::try_from(mantissa)
                .or(Err(UnsignedFromFloatError::FloatNonIntegerOrOutOfRange))
                .and_then(|n| {
                    n.arithmetic_checked_shl(exponent)
                        .ok_or(UnsignedFromFloatError::FloatNonIntegerOrOutOfRange)
                })
        }
    }
}

fn primitive_float_convertible_from_unsigned<
    T: PrimitiveFloat,
    U: PrimitiveUnsigned + SciMantissaAndExponent<T, u64>,
>(
    value: U,
) -> bool {
    if value == U::ZERO {
        return true;
    }
    let precision = (value >> value.trailing_zeros()).significant_bits();
    precision <= T::MANTISSA_WIDTH + 1
        && i64::wrapping_from(SciMantissaAndExponent::<T, u64>::sci_exponent(value))
            <= T::MAX_EXPONENT
}

#[inline]
fn unsigned_convertible_from_primitive_float<T: PrimitiveUnsigned, U: PrimitiveFloat>(
    value: U,
) -> bool {
    value >= U::ZERO
        && value.is_integer()
        && (value == U::ZERO || value.sci_exponent() < i64::wrapping_from(T::WIDTH))
}

macro_rules! impl_from_float_unsigned {
    ($u:ident) => {
        macro_rules! impl_from_float_unsigned_inner {
            ($f:ident) => {
                impl RoundingFrom<$u> for $f {
                    /// Converts a value of an unsigned type to a value of a floating point type
                    /// according to a specified [`RoundingMode`]. An [`Ordering`] is also returned,
                    /// indicating whether the returned value is less than, equal to, or greater
                    /// than the original value.
                    ///
                    /// - If the rounding mode is `Floor` or `Down`, the largest float less than or
                    ///   equal to the value is returned.
                    /// - If the rounding mode is `Ceiling` or `Up`, the smallest float greater than
                    ///   or equal to the value is returned.
                    /// - If the rounding mode is `Nearest`, then the nearest float is returned. If
                    ///   the value is exactly between two floats, the float with the zero
                    ///   least-significant bit in its representation is selected. If the value is
                    ///   larger than the maximum finite float (which can only happen when
                    ///   converting a `u128` to an `f32`), the maximum finite float is returned.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Panics
                    /// Panics if `rm` is `Exact` but `value` is not exactly equal to any value of
                    /// the primitive float type.
                    ///
                    /// # Examples
                    /// See [here](super::from#rounding_from).
                    #[inline]
                    fn rounding_from(value: $u, rm: RoundingMode) -> ($f, Ordering) {
                        primitive_float_rounding_from_unsigned(value, rm)
                    }
                }

                impl RoundingFrom<$f> for $u {
                    /// Converts a value of a floating point type to a value of an unsigned type
                    /// according to a specified [`RoundingMode`]. An [`Ordering`] is also returned,
                    /// indicating whether the returned value is less than, equal to, or greater
                    /// than the original value.
                    ///
                    /// - If the rounding mode is `Floor`, the largest number less than or equal to
                    ///   the value is returned. If the float is greater than the maximum
                    ///   representable unsigned value, the maximum unsigned value is returned. If
                    ///   the float is negative, the function panics.
                    /// - If the rounding mode is `Ceiling`, the smallest number greater than or
                    ///   equal to the value is returned. If the float is negative, zero is
                    ///   returned. If the float is greater than the maximum representable unsigned
                    ///   value, the function panics.
                    /// - If the rounding mode is `Down`, then the rounding proceeds as with `Floor`
                    ///   if the float is non-negative and as with `Ceiling` if the value is
                    ///   negative.
                    /// - If the rounding mode is `Up`, then the rounding proceeds as with `Ceiling`
                    ///   if the value is non-negative and as with `Floor` if the value is negative.
                    /// - If the rounding mode is `Nearest`, then the nearest value is returned. If
                    ///   the value is exactly between two numbers, the even one is selected. If the
                    ///   float is greater than the maximum representable unsigned value, the
                    ///   maximum unsigned value is returned. If the float is negative, zero is
                    ///   returned.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Panics
                    /// - If `value` is `NaN`.
                    /// - If `rm` is `Exact` but `value` is not exactly equal to any value of the
                    ///   unsigned type.
                    /// - If `value` is greater than the maximum value of the unsigned type and `rm`
                    ///   is `Ceiling` or `Up`.
                    /// - If `value` is negative and `rm` is `Floor` or `Up`.
                    ///
                    /// # Examples
                    /// See [here](super::from#rounding_from).
                    #[inline]
                    fn rounding_from(value: $f, rm: RoundingMode) -> ($u, Ordering) {
                        unsigned_rounding_from_primitive_float(value, rm)
                    }
                }

                impl TryFrom<$u> for NiceFloat<$f> {
                    type Error = PrimitiveFloatFromUnsignedError;

                    /// Converts a value of an unsigned type to a value of a floating point type,
                    /// returning an error if an exact conversion is not possible.
                    ///
                    /// The conversion succeeds if the unsigned value is not too large to represent
                    /// (which can only happen when converting a [`u128`] to an [`f32`]) and the
                    /// precision of the unsigned value is not too high.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Examples
                    /// See [here](super::from#try_from).
                    #[inline]
                    fn try_from(value: $u) -> Result<NiceFloat<$f>, Self::Error> {
                        primitive_float_try_from_unsigned(value).map(NiceFloat)
                    }
                }

                impl TryFrom<NiceFloat<$f>> for $u {
                    type Error = UnsignedFromFloatError;

                    /// Converts a value of a floating point type to a value of an unsigned type,
                    /// returning an error if an exact conversion is not possible.
                    ///
                    /// The conversion succeeds if the floating point value is an integer, not
                    /// negative (negative zero is ok), and not too large.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Examples
                    /// See [here](super::from#try_from).
                    #[inline]
                    fn try_from(value: NiceFloat<$f>) -> Result<$u, Self::Error> {
                        unsigned_try_from_primitive_float(value.0)
                    }
                }

                impl ConvertibleFrom<$u> for $f {
                    /// Checks whether a value of an unsigned type is convertible to a floating
                    /// point type.
                    ///
                    /// An exact conversion is possible if the unsigned value is not too large to
                    /// represent (which can only happen when converting a [`u128`] to an [`f32`])
                    /// and the precision of the unsigned value is not too high.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Examples
                    /// See [here](super::from#convertible_from).
                    #[inline]
                    fn convertible_from(value: $u) -> bool {
                        primitive_float_convertible_from_unsigned::<$f, $u>(value)
                    }
                }

                impl ConvertibleFrom<$f> for $u {
                    /// Checks whether a value of a floating point type is convertible to an
                    /// unsigned type.
                    ///
                    /// An exact conversion is possible if the floating point value is an integer,
                    /// not negative (negative zero is ok), and not too large.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Examples
                    /// See [here](super::from#convertible_from).
                    #[inline]
                    fn convertible_from(value: $f) -> bool {
                        unsigned_convertible_from_primitive_float::<$u, $f>(value)
                    }
                }
            };
        }
        apply_to_primitive_floats!(impl_from_float_unsigned_inner);
    };
}
apply_to_unsigneds!(impl_from_float_unsigned);

#[inline]
fn primitive_float_rounding_from_signed<
    U: PrimitiveUnsigned,
    S: PrimitiveSigned + UnsignedAbs<Output = U>,
    F: PrimitiveFloat + RoundingFrom<U>,
>(
    value: S,
    rm: RoundingMode,
) -> (F, Ordering) {
    let abs = value.unsigned_abs();
    if value >= S::ZERO {
        F::rounding_from(abs, rm)
    } else {
        let (x, o) = F::rounding_from(abs, -rm);
        (-x, o.reverse())
    }
}

fn signed_rounding_from_primitive_float<
    U: PrimitiveUnsigned + RoundingFrom<F>,
    S: TryFrom<U> + PrimitiveSigned + UnsignedAbs<Output = U>,
    F: PrimitiveFloat,
>(
    value: F,
    rm: RoundingMode,
) -> (S, Ordering) {
    if value.is_infinite() {
        return if value.is_sign_positive() {
            match rm {
                Exact => {
                    panic!("Value cannot be represented exactly as a {}", S::NAME)
                }
                Down | Floor | Nearest => (S::MAX, Less),
                _ => panic!("Cannot round away from extreme value"),
            }
        } else {
            match rm {
                Exact => {
                    panic!("Value cannot be represented exactly as a {}", S::NAME)
                }
                Down | Nearest | Ceiling => (S::MIN, Greater),
                _ => panic!("Cannot round away from extreme value"),
            }
        };
    }
    if value == F::ZERO {
        return (S::ZERO, Equal);
    }
    if value.is_sign_positive() {
        let (abs, o) = U::rounding_from(value, rm);
        if let Ok(n) = S::try_from(abs) {
            (n, o)
        } else {
            match rm {
                Exact => {
                    panic!("Value cannot be represented exactly as an {}", S::NAME)
                }
                Floor | Down | Nearest => (S::MAX, Less),
                _ => panic!(
                    "Value is greater than {}::MAX and rounding mode is {}",
                    S::NAME,
                    rm
                ),
            }
        }
    } else {
        let (abs, o) = U::rounding_from(-value, -rm);
        let n = if abs == S::MIN.unsigned_abs() {
            Some(S::MIN)
        } else {
            S::try_from(abs).ok().map(Neg::neg)
        };
        if let Some(n) = n {
            (n, o.reverse())
        } else {
            match rm {
                Exact => {
                    panic!("Value cannot be represented exactly as an {}", S::NAME)
                }
                Ceiling | Down | Nearest => (S::MIN, Greater),
                _ => panic!(
                    "Value is smaller than {}::MIN and rounding mode is {}",
                    S::NAME,
                    rm
                ),
            }
        }
    }
}

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub struct PrimitiveFloatFromSignedError;

#[inline]
fn primitive_float_try_from_signed<
    U: PrimitiveUnsigned,
    S: PrimitiveSigned + UnsignedAbs<Output = U>,
    F: PrimitiveFloat,
>(
    value: S,
) -> Result<F, PrimitiveFloatFromSignedError>
where
    NiceFloat<F>: TryFrom<U>,
{
    let abs = value.unsigned_abs();
    if value >= S::ZERO {
        NiceFloat::<F>::try_from(abs)
            .map(|f| f.0)
            .map_err(|_| PrimitiveFloatFromSignedError)
    } else {
        NiceFloat::<F>::try_from(abs)
            .map(|f| -f.0)
            .map_err(|_| PrimitiveFloatFromSignedError)
    }
}

#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum SignedFromFloatError {
    FloatInfiniteOrNan,
    FloatNonIntegerOrOutOfRange,
}

fn signed_try_from_primitive_float<
    U: TryFrom<NiceFloat<F>> + PrimitiveUnsigned,
    S: TryFrom<U> + PrimitiveSigned + UnsignedAbs<Output = U>,
    F: PrimitiveFloat,
>(
    value: F,
) -> Result<S, SignedFromFloatError> {
    if !value.is_finite() {
        return Err(SignedFromFloatError::FloatInfiniteOrNan);
    }
    if value >= F::ZERO {
        S::try_from(
            U::try_from(NiceFloat(value))
                .or(Err(SignedFromFloatError::FloatNonIntegerOrOutOfRange))?,
        )
        .or(Err(SignedFromFloatError::FloatNonIntegerOrOutOfRange))
    } else {
        let abs = U::try_from(NiceFloat(-value))
            .or(Err(SignedFromFloatError::FloatNonIntegerOrOutOfRange))?;
        if abs == S::MIN.unsigned_abs() {
            Ok(S::MIN)
        } else {
            S::try_from(abs)
                .map(Neg::neg)
                .or(Err(SignedFromFloatError::FloatNonIntegerOrOutOfRange))
        }
    }
}

#[inline]
fn primitive_float_convertible_from_signed<
    U: PrimitiveUnsigned,
    S: PrimitiveSigned + UnsignedAbs<Output = U>,
    F: ConvertibleFrom<U> + PrimitiveFloat,
>(
    value: S,
) -> bool {
    F::convertible_from(value.unsigned_abs())
}

fn signed_convertible_from_primitive_float<U: PrimitiveUnsigned, F: PrimitiveFloat>(
    value: F,
) -> bool {
    if !value.is_integer() {
        return false;
    }
    if value >= F::ZERO {
        value == F::ZERO || value.sci_exponent() < i64::wrapping_from(U::WIDTH) - 1
    } else {
        let exponent = value.sci_exponent();
        let limit = i64::wrapping_from(U::WIDTH) - 1;
        value == F::ZERO
            || exponent < limit
            || exponent == limit
                && value == -F::from_sci_mantissa_and_exponent(F::ONE, exponent).unwrap()
    }
}

macro_rules! impl_from_float_signed {
    ($u:ident, $i:ident) => {
        macro_rules! impl_from_float_signed_inner {
            ($f:ident) => {
                impl RoundingFrom<$i> for $f {
                    /// Converts a value of a signed type to a value of a floating point type
                    /// according to a specified [`RoundingMode`]. An [`Ordering`] is also returned,
                    /// indicating whether the returned value is less than, equal to, or greater
                    /// than the original value.
                    ///
                    /// - If the rounding mode is `Floor`, the largest float less than or equal to
                    ///   the value is returned.
                    /// - If the rounding mode is `Ceiling`, the smallest float greater than or
                    ///   equal to the value is returned.
                    /// - If the rounding mode is `Down`, then the rounding proceeds as with `Floor`
                    ///   if the value is non-negative and as with `Ceiling` if the value is
                    ///   negative.
                    /// - If the rounding mode is `Up`, then the rounding proceeds as with `Ceiling`
                    ///   if the value is non-negative and as with `Floor` if the value is negative.
                    /// - If the rounding mode is `Nearest`, then the nearest float is returned. If
                    ///   the value is exactly between two floats, the float with the zero
                    ///   least-significant bit in its representation is selected.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Panics
                    /// Panics if `rm` is `Exact` but `value` is not exactly equal to any value of
                    /// the primitive float type.
                    ///
                    /// # Examples
                    /// See [here](super::from#rounding_from).
                    #[inline]
                    fn rounding_from(value: $i, rm: RoundingMode) -> ($f, Ordering) {
                        primitive_float_rounding_from_signed::<$u, $i, $f>(value, rm)
                    }
                }

                impl RoundingFrom<$f> for $i {
                    /// Converts a value of a floating point type to a value of a signed type
                    /// according to a specified [`RoundingMode`]. An [`Ordering`] is also returned,
                    /// indicating whether the returned value is less than, equal to, or greater
                    /// than the original value.
                    ///
                    /// - If the rounding mode is `Floor`, the largest number less than or equal to
                    ///   the value is returned. If the float is greater than the maximum
                    ///   representable signed value, the maximum signed value is returned. If the
                    ///   float is smaller than the minimum representable signed value, the function
                    ///   panics.
                    /// - If the rounding mode is `Ceiling`, the smallest number greater than or
                    ///   equal to the value is returned. If the float is smaller than the minimum
                    ///   representable signed value, the minimum signed value is returned. If the
                    ///   float is greater than the maximum representable signed value, the function
                    ///   panics.
                    /// - If the rounding mode is `Down`, then the rounding proceeds as with `Floor`
                    ///   if the float is non-negative and as with `Ceiling` if the value is
                    ///   negative.
                    /// - If the rounding mode is `Up`, then the rounding proceeds as with `Ceiling`
                    ///   if the value is non-negative and as with `Floor` if the value is negative.
                    /// - If the rounding mode is `Nearest`, then the nearest value is returned. If
                    ///   the value is exactly between two numbers, the even one is selected. If the
                    ///   float is greater than the maximum representable signed value, the maximum
                    ///   signed value is returned. If the float is smaller than the minimum
                    ///   representable signed value, the minimum signed value is returned.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Panics
                    /// - If `value` is `NaN`.
                    /// - If `rm` is `Exact` but `value` is not exactly equal to any value of the
                    ///   unsigned type.
                    /// - If `value` is greater than the maximum value of the signed type and `rm`
                    ///   is `Ceiling` or `Up`.
                    /// - If `value` is smaller than the minimum value of the signed type and `rm`
                    ///   is `Floor` or `Up`.
                    ///
                    /// # Examples
                    /// See [here](super::from#rounding_from).
                    #[inline]
                    fn rounding_from(value: $f, rm: RoundingMode) -> ($i, Ordering) {
                        signed_rounding_from_primitive_float::<$u, $i, $f>(value, rm)
                    }
                }

                impl TryFrom<$i> for NiceFloat<$f> {
                    type Error = PrimitiveFloatFromSignedError;

                    /// Converts a value of a signed type to a value of a floating point type,
                    /// returning an error if an exact conversion is not possible.
                    ///
                    /// The conversion succeeds if the precision of the signed value is not too
                    /// high.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Examples
                    /// See [here](super::from#try_from).
                    #[inline]
                    fn try_from(value: $i) -> Result<NiceFloat<$f>, Self::Error> {
                        primitive_float_try_from_signed(value).map(NiceFloat)
                    }
                }

                impl TryFrom<NiceFloat<$f>> for $i {
                    type Error = SignedFromFloatError;

                    /// Converts a value of a floating point type to a value of a signed type,
                    /// returning an error if an exact conversion is not possible.
                    ///
                    /// The conversion succeeds if the floating point value is an integer and not
                    /// too large or too small.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Examples
                    /// See [here](super::from#try_from).
                    #[inline]
                    fn try_from(value: NiceFloat<$f>) -> Result<$i, Self::Error> {
                        signed_try_from_primitive_float::<$u, $i, $f>(value.0)
                    }
                }

                impl ConvertibleFrom<$i> for $f {
                    /// Checks whether a value of a signed type is convertible to a floating point
                    /// type.
                    ///
                    /// An exact conversion is possible if the precision of the signed value is not
                    /// too high.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Examples
                    /// See [here](super::from#convertible_from).
                    #[inline]
                    fn convertible_from(value: $i) -> bool {
                        primitive_float_convertible_from_signed::<$u, $i, $f>(value)
                    }
                }

                impl ConvertibleFrom<$f> for $i {
                    /// Checks whether a value of a floating point type is convertible to a signed
                    /// type.
                    ///
                    /// An exact conversion is possible if the floating point value is an integer
                    /// and not too large or too small.
                    ///
                    /// # Worst-case complexity
                    /// Constant time and additional memory.
                    ///
                    /// # Examples
                    /// See [here](super::from#convertible_from).
                    #[inline]
                    fn convertible_from(value: $f) -> bool {
                        signed_convertible_from_primitive_float::<$u, $f>(value)
                    }
                }
            };
        }
        apply_to_primitive_floats!(impl_from_float_signed_inner);
    };
}
apply_to_unsigned_signed_pairs!(impl_from_float_signed);