1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::arithmetic::traits::ShrRound;
use crate::num::basic::integers::PrimitiveInt;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::{
    FromOtherTypeSlice, SplitInHalf, VecFromOtherType, VecFromOtherTypeSlice, WrappingFrom,
};
use crate::rounding_modes::RoundingMode::*;
use alloc::vec;
use alloc::vec::Vec;

const fn from_other_type_slice_ident<T: PrimitiveUnsigned>(xs: &[T]) -> T {
    if xs.is_empty() {
        T::ZERO
    } else {
        xs[0]
    }
}

macro_rules! impl_slice_traits_ident {
    ($a:ty) => {
        impl FromOtherTypeSlice<$a> for $a {
            /// Converts a slice of one type of value to a single value of the same type.
            ///
            /// $$
            /// f((x_k)_{k=0}^{n-1}) = \\begin{cases}
            ///     0 & \text{if} \\quad n = 0, \\\\
            ///     x_0 & \\text{otherwise},
            /// \\end{cases}
            /// $$
            /// where $W$ is the width of the type.
            ///
            /// The slice is interpreted as the base-$2^W$ digits of the value, in ascending order,
            /// where $W$ is the width of the type. If there's more than one element in the input
            /// slice, the value wraps and all elements past the first are ignored. This means that
            /// if the slice is empty, the output value is 0; otherwise, it's the first element of
            /// the slice.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::slice#from_other_type_slice).
            #[inline]
            fn from_other_type_slice(xs: &[$a]) -> Self {
                from_other_type_slice_ident(xs)
            }
        }

        impl VecFromOtherTypeSlice<$a> for $a {
            /// Converts a slice of one type of value to a [`Vec`] of the same type.
            ///
            /// In this case, it just converts the slice to a [`Vec`] the usual way.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
            ///
            /// # Examples
            /// See [here](super::slice#vec_from_other_type_slice).
            #[inline]
            fn vec_from_other_type_slice(xs: &[$a]) -> Vec<Self> {
                xs.to_vec()
            }
        }

        impl VecFromOtherType<$a> for $a {
            /// Converts a value of one type to a [`Vec`] of the same type.
            ///
            /// In this case, it just creates a one-element [`Vec`].
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::slice#vec_from_other_type).
            #[inline]
            fn vec_from_other_type(x: $a) -> Vec<Self> {
                ::alloc::vec![x]
            }
        }
    };
}

fn from_other_type_slice_large_to_small<
    A: PrimitiveUnsigned,
    B: PrimitiveUnsigned + WrappingFrom<A>,
>(
    xs: &[A],
) -> B {
    if xs.is_empty() {
        B::ZERO
    } else {
        B::wrapping_from(xs[0])
    }
}

fn vec_from_other_type_slice_large_to_small<
    A: PrimitiveUnsigned,
    B: PrimitiveUnsigned + WrappingFrom<A>,
>(
    xs: &[A],
) -> Vec<B> {
    let log_size_ratio = A::LOG_WIDTH - B::LOG_WIDTH;
    let mut out = ::alloc::vec![B::ZERO; xs.len() << log_size_ratio];
    for (chunk, &u) in out.chunks_exact_mut(1 << log_size_ratio).zip(xs.iter()) {
        let mut u = u;
        for x in chunk {
            *x = B::wrapping_from(u);
            u >>= B::WIDTH;
        }
    }
    out
}

fn vec_from_other_type_large_to_small<
    A: PrimitiveUnsigned,
    B: PrimitiveUnsigned + WrappingFrom<A>,
>(
    mut x: A,
) -> Vec<B> {
    let mut xs = ::alloc::vec![B::ZERO; 1 << (A::LOG_WIDTH - B::LOG_WIDTH)];
    for out in &mut xs {
        *out = B::wrapping_from(x);
        x >>= B::WIDTH;
    }
    xs
}

macro_rules! impl_slice_traits_large_to_small {
    ($a:ident, $b:ident) => {
        impl FromOtherTypeSlice<$a> for $b {
            /// Converts a slice of one type of unsigned integer to a single value of a smaller
            /// unsigned type.
            ///
            /// $$
            /// f((x_k)_{k=0}^{n-1}) = \\begin{cases}
            ///     0 & \text{if} \\quad n = 0, \\\\
            ///     y & \\text{otherwise},
            /// \\end{cases}
            /// $$
            /// where $0 \leq y < 2^W$, $x = y + k2^W$ for some integer $k$, and $W$ is the width of
            /// the output type.
            ///
            /// The slice is interpreted as the base-$2^W$ digits of the value, in ascending order,
            /// where $W$ is the width of the type. If the slice is empty, the output value is 0;
            /// otherwise, it consists of the least-significant bits of the first element of the
            /// slice.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::slice#from_other_type_slice).
            #[inline]
            fn from_other_type_slice(xs: &[$a]) -> Self {
                from_other_type_slice_large_to_small(xs)
            }
        }

        impl VecFromOtherTypeSlice<$a> for $b {
            /// Converts a slice of one type of unsigned integer to a [`Vec`] of a smaller unsigned
            /// type.
            ///
            /// Each value of the input slice will be broken up into several values in the output
            /// [`Vec`].
            ///
            /// Let $V$ be the the width of the input type and $W$ the width of the output type.
            ///
            /// $f((x_k)_ {k=0}^{n-1}) = (y_k)_ {k=0}^{m-1}$, where
            ///
            /// $$
            /// \sum_{j=0}^{n-1}2^{jV}x_j = \sum_{j=0}^{m-1}2^{jW}y_j,
            /// $$
            ///
            /// $y_j < 2^W$ for all $j$, and $m = 2^{V-W}n$.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
            ///
            /// # Examples
            /// See [here](super::slice#vec_from_other_type_slice).
            #[inline]
            fn vec_from_other_type_slice(xs: &[$a]) -> Vec<Self> {
                vec_from_other_type_slice_large_to_small(xs)
            }
        }

        impl VecFromOtherType<$a> for $b {
            /// Converts a value of one type of unsigned integer to a [`Vec`] of a smaller unsigned
            /// type.
            ///
            /// The input value will be broken up into several values in the output [`Vec`].
            ///
            /// $f(x) = (y_k)_{k=0}^{m-1}$, where $x = \sum_{j=0}^{m-1}2^{jW}y_j$ and $m =
            /// 2^{V-W}n$.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::slice#vec_from_other_type).
            #[inline]
            fn vec_from_other_type(x: $a) -> Vec<Self> {
                vec_from_other_type_large_to_small(x)
            }
        }
    };
}

fn from_other_type_slice_small_to_large<
    A: PrimitiveUnsigned,
    B: PrimitiveUnsigned + WrappingFrom<A>,
>(
    xs: &[A],
) -> B {
    let mut result = B::ZERO;
    let mut offset = 0;
    for &u in xs.iter().take(1 << (B::LOG_WIDTH - A::LOG_WIDTH)) {
        result |= B::wrapping_from(u) << offset;
        offset += A::WIDTH;
    }
    result
}

fn vec_from_other_type_slice_small_to_large<
    A: PrimitiveUnsigned,
    B: PrimitiveUnsigned + WrappingFrom<A>,
>(
    xs: &[A],
) -> Vec<B> {
    let log_size_ratio = B::LOG_WIDTH - A::LOG_WIDTH;
    let mut out = ::alloc::vec![B::ZERO; xs.len().shr_round(log_size_ratio, Ceiling).0];
    for (x, chunk) in out.iter_mut().zip(xs.chunks(1 << log_size_ratio)) {
        *x = from_other_type_slice_small_to_large(chunk);
    }
    out
}

fn vec_from_other_type_small_to_large<A, B: WrappingFrom<A>>(x: A) -> Vec<B> {
    ::alloc::vec![B::wrapping_from(x)]
}

macro_rules! impl_slice_traits_small_to_large {
    ($a:ident, $b:ident) => {
        impl FromOtherTypeSlice<$a> for $b {
            /// Converts a slice of one type of unsigned integer to a single value of a larger
            /// unsigned type.
            ///
            /// Let $V$ be the the width of the input type and $W$ the width of the output type.
            ///
            /// $f((x_k)_{k=0}^{n-1}) = y$, where $y < 2^W$ and
            ///
            /// $$
            /// y = k2^W + \sum_{j=0}^{n-1}2^{jV}x_j
            /// $$
            ///
            /// for some integer $k$.
            ///
            /// If the input slice contains more values than necessary to build an output value, the
            /// trailing values are ignored. If the input slice contains too few values to build an
            /// output value, the most-significant bits of the output value are set to 0.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::slice#from_other_type_slice).
            #[inline]
            fn from_other_type_slice(xs: &[$a]) -> Self {
                from_other_type_slice_small_to_large(xs)
            }
        }

        impl VecFromOtherTypeSlice<$a> for $b {
            /// Converts a slice of one type of unsigned integer to a [`Vec`] of a larger unsigned
            /// type.
            ///
            /// Adjacent chunks of values in the input slice will be joined into values of the
            /// output [`Vec`]. If the last few elements of the input slice don't make up a full
            /// chunk, the most-significant bits of the last output value are set to 0.
            ///
            /// Let $V$ be the the width of the input type and $W$ the width of the output type.
            ///
            /// $f((x_k)_ {k=0}^{n-1}) = (y_k)_ {k=0}^{m-1}$, where
            ///
            /// $$
            /// \sum_{j=0}^{n-1}2^{jV}x_j = \sum_{j=0}^{m-1}2^{jW}y_j,
            /// $$
            ///
            /// $y_j < 2^W$ for all $j$, and $m = \lceil n / 2^{W-V} \rceil$.
            ///
            /// # Worst-case complexity
            /// $T(n) = O(n)$
            ///
            /// $M(n) = O(n)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
            ///
            /// # Examples
            /// See [here](super::slice#vec_from_other_type_slice).
            #[inline]
            fn vec_from_other_type_slice(xs: &[$a]) -> Vec<Self> {
                vec_from_other_type_slice_small_to_large(xs)
            }
        }

        impl VecFromOtherType<$a> for $b {
            /// Converts a value of one type of unsigned integer to a [`Vec`] of a larger unsigned
            /// type.
            ///
            /// The output [`Vec`] only contains one value. The least-significant bits of the output
            /// value contain the input value, and the most-significant bits are set to 0.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::slice#vec_from_other_type).
            #[inline]
            fn vec_from_other_type(x: $a) -> Vec<Self> {
                vec_from_other_type_small_to_large(x)
            }
        }
    };
}
apply_to_unsigneds!(impl_slice_traits_ident);

impl_slice_traits_large_to_small!(u16, u8);
impl_slice_traits_large_to_small!(u32, u8);
impl_slice_traits_large_to_small!(u32, u16);
impl_slice_traits_large_to_small!(u64, u8);
impl_slice_traits_large_to_small!(u64, u16);
impl_slice_traits_large_to_small!(u64, u32);
impl_slice_traits_large_to_small!(u128, u8);
impl_slice_traits_large_to_small!(u128, u16);
impl_slice_traits_large_to_small!(u128, u32);
impl_slice_traits_large_to_small!(u128, u64);
impl_slice_traits_large_to_small!(u128, usize);
impl_slice_traits_large_to_small!(usize, u8);
impl_slice_traits_large_to_small!(usize, u16);

impl_slice_traits_small_to_large!(u8, u16);
impl_slice_traits_small_to_large!(u8, u32);
impl_slice_traits_small_to_large!(u8, u64);
impl_slice_traits_small_to_large!(u8, u128);
impl_slice_traits_small_to_large!(u8, usize);
impl_slice_traits_small_to_large!(u16, u32);
impl_slice_traits_small_to_large!(u16, u64);
impl_slice_traits_small_to_large!(u16, u128);
impl_slice_traits_small_to_large!(u16, usize);
impl_slice_traits_small_to_large!(u32, u64);
impl_slice_traits_small_to_large!(u32, u128);
impl_slice_traits_small_to_large!(u64, u128);
impl_slice_traits_small_to_large!(usize, u128);

impl FromOtherTypeSlice<u32> for usize {
    /// Converts a slice of `u32`s to a single `usize`.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// See [here](super::slice#from_other_type_slice).
    fn from_other_type_slice(xs: &[u32]) -> Self {
        if usize::WIDTH == u32::WIDTH {
            if xs.is_empty() {
                0
            } else {
                usize::wrapping_from(xs[0])
            }
        } else {
            assert_eq!(usize::WIDTH, u64::WIDTH);
            let mut result = 0;
            let mut offset = 0;
            for &u in xs.iter().take(2) {
                result |= usize::wrapping_from(u) << offset;
                offset += u32::WIDTH;
            }
            result
        }
    }
}

impl VecFromOtherTypeSlice<u32> for usize {
    /// Converts a slice of [`u32`]s to a [`Vec`] of [`usize`]s.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
    ///
    /// See [here](super::slice#vec_from_other_type_slice).
    fn vec_from_other_type_slice(xs: &[u32]) -> Vec<Self> {
        let mut out;
        if usize::WIDTH == u32::WIDTH {
            out = vec![0; xs.len()];
            for (x, &u) in out.iter_mut().zip(xs.iter()) {
                *x = usize::wrapping_from(u);
            }
        } else {
            assert_eq!(usize::WIDTH, u64::WIDTH);
            out = vec![0; xs.len().shr_round(1, Ceiling).0];
            for (x, chunk) in out.iter_mut().zip(xs.chunks(2)) {
                *x = usize::from_other_type_slice(chunk);
            }
        }
        out
    }
}

impl VecFromOtherType<u32> for usize {
    /// Converts a [`u32`] to a [`Vec`] of [`usize`]s.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// See [here](super::slice#vec_from_other_type).
    #[inline]
    fn vec_from_other_type(x: u32) -> Vec<Self> {
        vec![usize::wrapping_from(x)]
    }
}

impl FromOtherTypeSlice<u64> for usize {
    /// Converts a slice of [`u64`]s to a single [`usize`].
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// See [here](super::slice#from_other_type_slice).
    #[inline]
    fn from_other_type_slice(xs: &[u64]) -> Self {
        if xs.is_empty() {
            0
        } else {
            usize::wrapping_from(xs[0])
        }
    }
}

impl VecFromOtherTypeSlice<u64> for usize {
    /// Converts a slice of [`u64`]s to a [`Vec`] of [`usize`]s.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
    ///
    /// See [here](super::slice#vec_from_other_type_slice).
    #[allow(arithmetic_overflow)]
    fn vec_from_other_type_slice(xs: &[u64]) -> Vec<Self> {
        let mut out;
        if usize::WIDTH == u32::WIDTH {
            out = ::alloc::vec![0; xs.len() << 1];
            for (chunk, &u) in out.chunks_exact_mut(2).zip(xs.iter()) {
                let mut u = u;
                for x in chunk {
                    *x = usize::wrapping_from(u);
                    u >>= usize::WIDTH;
                }
            }
        } else {
            assert_eq!(usize::WIDTH, u64::WIDTH);
            out = ::alloc::vec![0; xs.len()];
            for (x, &u) in out.iter_mut().zip(xs.iter()) {
                *x = usize::wrapping_from(u);
            }
        }
        out
    }
}

impl VecFromOtherType<u64> for usize {
    /// Converts a [`u64`] to a [`Vec`] of [`usize`]s.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// See [here](super::slice#vec_from_other_type).
    fn vec_from_other_type(x: u64) -> Vec<Self> {
        if usize::WIDTH == u32::WIDTH {
            let (upper, lower) = x.split_in_half();
            ::alloc::vec![usize::wrapping_from(lower), usize::wrapping_from(upper)]
        } else {
            assert_eq!(usize::WIDTH, u64::WIDTH);
            ::alloc::vec![usize::wrapping_from(x)]
        }
    }
}

impl FromOtherTypeSlice<usize> for u32 {
    /// Converts a slice of [`usize`]s to a single [`u32`].
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// See [here](super::slice#from_other_type_slice).
    #[inline]
    fn from_other_type_slice(xs: &[usize]) -> Self {
        if xs.is_empty() {
            0
        } else {
            u32::wrapping_from(xs[0])
        }
    }
}

impl VecFromOtherTypeSlice<usize> for u32 {
    /// Converts a slice of [`usize`]s to a [`Vec`] of [`u32`]s.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
    ///
    /// See [here](super::slice#vec_from_other_type_slice).
    #[allow(arithmetic_overflow)]
    fn vec_from_other_type_slice(xs: &[usize]) -> Vec<Self> {
        let mut out;
        if usize::WIDTH == u32::WIDTH {
            out = ::alloc::vec![0; xs.len()];
            for (x, &u) in out.iter_mut().zip(xs.iter()) {
                *x = u32::wrapping_from(u);
            }
        } else {
            assert_eq!(usize::WIDTH, u64::WIDTH);
            out = ::alloc::vec![0; xs.len() << 1];
            for (chunk, &u) in out.chunks_exact_mut(2).zip(xs.iter()) {
                let mut u = u;
                for x in chunk {
                    *x = u32::wrapping_from(u);
                    u >>= u32::WIDTH;
                }
            }
        }
        out
    }
}

impl VecFromOtherType<usize> for u32 {
    /// Converts a [`usize`] to a [`Vec`] of [`u32`]s.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// See [here](super::slice#vec_from_other_type).
    #[allow(arithmetic_overflow)]
    fn vec_from_other_type(x: usize) -> Vec<Self> {
        if usize::WIDTH == u32::WIDTH {
            ::alloc::vec![u32::wrapping_from(x)]
        } else {
            assert_eq!(usize::WIDTH, u64::WIDTH);
            let (upper, lower) = u64::wrapping_from(x).split_in_half();
            ::alloc::vec![lower, upper]
        }
    }
}

impl FromOtherTypeSlice<usize> for u64 {
    /// Converts a slice of [`usize`]s to a single [`u64`].
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// See [here](super::slice#from_other_type_slice).
    fn from_other_type_slice(xs: &[usize]) -> Self {
        if usize::WIDTH == u32::WIDTH {
            let mut result = 0;
            let mut offset = 0;
            for &u in xs.iter().take(2) {
                result |= u64::wrapping_from(u) << offset;
                offset += usize::WIDTH;
            }
            result
        } else {
            assert_eq!(usize::WIDTH, u64::WIDTH);
            if xs.is_empty() {
                0
            } else {
                u64::wrapping_from(xs[0])
            }
        }
    }
}

impl VecFromOtherTypeSlice<usize> for u64 {
    /// Converts a slice of [`usize`]s to a [`Vec`] of [`u64`]s.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
    ///
    /// See [here](super::slice#vec_from_other_type_slice).
    fn vec_from_other_type_slice(xs: &[usize]) -> Vec<Self> {
        let mut out;
        if usize::WIDTH == u32::WIDTH {
            out = ::alloc::vec![0; xs.len().shr_round(1, Ceiling).0];
            for (x, chunk) in out.iter_mut().zip(xs.chunks(2)) {
                *x = u64::from_other_type_slice(chunk);
            }
        } else {
            assert_eq!(usize::WIDTH, u64::WIDTH);
            out = ::alloc::vec![0; xs.len()];
            for (x, &u) in out.iter_mut().zip(xs.iter()) {
                *x = u64::wrapping_from(u);
            }
        }
        out
    }
}

impl VecFromOtherType<usize> for u64 {
    /// Converts a [`usize`] to a [`Vec`] of [`u64`]s.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// See [here](super::slice#vec_from_other_type).
    #[inline]
    fn vec_from_other_type(x: usize) -> Vec<Self> {
        ::alloc::vec![u64::wrapping_from(x)]
    }
}