1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::arithmetic::traits::{CheckedLogBase2, NegAssign, Pow, UnsignedAbs};
use crate::num::basic::integers::PrimitiveInt;
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::string::options::{SciSizeOptions, ToSciOptions};
use crate::num::conversion::string::to_string::BaseFmtWrapper;
use crate::num::conversion::string::to_string::{
digit_to_display_byte_lower, digit_to_display_byte_upper,
};
use crate::num::conversion::traits::{ExactFrom, ToSci};
use crate::rounding_modes::RoundingMode::*;
use crate::slices::slice_trailing_zeros;
use alloc::string::String;
use core::fmt::{Display, Formatter, Write};
/// A `struct` that can be used to format a number in scientific notation.
pub struct SciWrapper<'a, T: ToSci> {
pub(crate) x: &'a T,
pub(crate) options: ToSciOptions,
}
impl<'a, T: ToSci> Display for SciWrapper<'a, T> {
#[inline]
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result {
self.x.fmt_sci(f, self.options)
}
}
#[doc(hidden)]
pub fn write_exponent<T: PrimitiveInt>(
f: &mut Formatter,
options: ToSciOptions,
exp: T,
) -> core::fmt::Result {
f.write_char(if options.get_e_lowercase() { 'e' } else { 'E' })?;
if exp > T::ZERO && (options.get_force_exponent_plus_sign() || options.get_base() >= 15) {
f.write_char('+')?;
}
write!(f, "{exp}")
}
fn write_helper<T>(x: T, f: &mut Formatter, options: ToSciOptions) -> core::fmt::Result
where
BaseFmtWrapper<T>: Display,
{
let w = BaseFmtWrapper {
x,
base: options.base,
};
if options.lowercase {
Display::fmt(&w, f)
} else {
write!(f, "{w:#}")
}
}
fn fmt_sci_valid_unsigned<T: PrimitiveUnsigned>(x: T, options: ToSciOptions) -> bool {
if x == T::ZERO || options.rounding_mode != Exact {
return true;
}
match options.size_options {
SciSizeOptions::Complete | SciSizeOptions::Scale(_) => true,
SciSizeOptions::Precision(precision) => {
let t_base = T::from(options.base);
let log = x.floor_log_base(t_base);
if log < precision {
return true;
}
let neg_scale = log - precision + 1;
if let Some(base_log) = options.base.checked_log_base_2() {
x.divisible_by_power_of_2(base_log * neg_scale)
} else {
x.divisible_by(Pow::pow(t_base, neg_scale))
}
}
}
}
fn fmt_sci_unsigned<T: PrimitiveUnsigned>(
mut x: T,
f: &mut Formatter,
options: ToSciOptions,
) -> core::fmt::Result
where
BaseFmtWrapper<T>: Display,
{
match options.size_options {
SciSizeOptions::Complete | SciSizeOptions::Scale(0) => write_helper(x, f, options),
SciSizeOptions::Scale(scale) => {
write_helper(x, f, options)?;
if options.include_trailing_zeros {
f.write_char('.')?;
for _ in 0..scale {
f.write_char('0')?;
}
}
Ok(())
}
SciSizeOptions::Precision(precision) => {
let t_base = T::from(options.base);
let log = if x == T::ZERO {
0
} else {
x.floor_log_base(t_base)
};
if log < precision {
// no exponent
write_helper(x, f, options)?;
if options.include_trailing_zeros {
let extra_zeros = precision - log - 1;
if extra_zeros != 0 {
f.write_char('.')?;
for _ in 0..extra_zeros {
f.write_char('0')?;
}
}
}
Ok(())
} else {
// exponent
let mut e = log;
let neg_scale = log - precision + 1;
if let Some(base_log) = options.base.checked_log_base_2() {
x.shr_round_assign(base_log * neg_scale, options.rounding_mode);
} else {
x.div_round_assign(Pow::pow(t_base, neg_scale), options.rounding_mode);
}
let mut chars = x.to_digits_desc(&options.base);
let mut len = chars.len();
let p = usize::exact_from(precision);
if len > p {
// rounded up to a power of the base, need to reduce precision
chars.pop();
len -= 1;
e += 1;
}
assert_eq!(len, p);
if !options.include_trailing_zeros {
chars.truncate(len - slice_trailing_zeros(&chars));
}
if options.lowercase {
for digit in &mut chars {
*digit = digit_to_display_byte_lower(*digit).unwrap();
}
} else {
for digit in &mut chars {
*digit = digit_to_display_byte_upper(*digit).unwrap();
}
}
len = chars.len();
if len != 1 {
chars.push(b'0');
chars.copy_within(1..len, 2);
chars[1] = b'.';
}
f.write_str(&String::from_utf8(chars).unwrap())?;
write_exponent(f, options, e)
}
}
}
}
#[inline]
fn fmt_sci_valid_signed<T: PrimitiveSigned>(x: T, options: ToSciOptions) -> bool
where
<T as UnsignedAbs>::Output: PrimitiveUnsigned,
{
fmt_sci_valid_unsigned(x.unsigned_abs(), options)
}
fn fmt_sci_signed<T: PrimitiveSigned>(
x: T,
f: &mut Formatter,
mut options: ToSciOptions,
) -> core::fmt::Result
where
<T as UnsignedAbs>::Output: PrimitiveUnsigned,
{
let abs = x.unsigned_abs();
if x >= T::ZERO {
abs.fmt_sci(f, options)
} else {
options.rounding_mode.neg_assign();
f.write_char('-')?;
abs.fmt_sci(f, options)
}
}
macro_rules! impl_to_sci_unsigned {
($t:ident) => {
impl ToSci for $t {
/// Determines whether an unsigned number can be converted to a string using
/// [`to_sci_with_options`](super::super::traits::ToSci::to_sci_with_options) and a
/// particular set of options.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::to_sci#fmt_sci_valid).
#[inline]
fn fmt_sci_valid(&self, options: ToSciOptions) -> bool {
fmt_sci_valid_unsigned(*self, options)
}
/// Converts an unsigned number to a string using a specified base, possibly formatting
/// the number using scientific notation.
///
/// See [`ToSciOptions`] for details on the available options. Note that setting
/// `neg_exp_threshold` has no effect, since there is never a need to use negative
/// exponents when representing an integer.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
///
/// # Panics
/// Panics if `options.rounding_mode` is `Exact`, but the size options are such that the
/// input must be rounded.
///
/// # Examples
/// See [here](super::to_sci).
#[inline]
fn fmt_sci(&self, f: &mut Formatter, options: ToSciOptions) -> core::fmt::Result {
fmt_sci_unsigned(*self, f, options)
}
}
};
}
apply_to_unsigneds!(impl_to_sci_unsigned);
macro_rules! impl_to_sci_signed {
($t:ident) => {
impl ToSci for $t {
/// Determines whether a signed number can be converted to a string using
/// [`to_sci_with_options`](super::super::traits::ToSci::to_sci_with_options) and a
/// particular set of options.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::to_sci#fmt_sci_valid).
#[inline]
fn fmt_sci_valid(&self, options: ToSciOptions) -> bool {
fmt_sci_valid_signed(*self, options)
}
/// Converts a signed number to a string using a specified base, possibly formatting the
/// number using scientific notation.
///
/// See [`ToSciOptions`] for details on the available options. Note that setting
/// `neg_exp_threshold` has no effect, since there is never a need to use negative
/// exponents when representing an integer.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `self.significant_bits()`.
///
/// # Panics
/// Panics if `options.rounding_mode` is `Exact`, but the size options are such that the
/// input must be rounded.
///
/// # Examples
/// See [here](super::to_sci).
#[inline]
fn fmt_sci(&self, f: &mut Formatter, options: ToSciOptions) -> core::fmt::Result {
fmt_sci_signed(*self, f, options)
}
}
};
}
apply_to_signeds!(impl_to_sci_signed);