1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::conversion::string::options::{FromSciStringOptions, ToSciOptions};
use crate::num::conversion::string::to_sci::SciWrapper;
use crate::rounding_modes::RoundingMode;
use alloc::string::String;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt::{Formatter, Result};

/// Expresses a value as a [`Vec`] of digits, or reads a value from an iterator of digits.
///
/// The trait is parameterized by `T`, which is both the digit type and the base type.
pub trait Digits<T>: Sized {
    /// Returns a [`Vec`] containing the digits of a value in ascending order: least- to
    /// most-significant.
    fn to_digits_asc(&self, base: &T) -> Vec<T>;

    /// Returns a [`Vec`] containing the digits of a value in descending order: most- to
    /// least-significant.
    fn to_digits_desc(&self, base: &T) -> Vec<T>;

    /// Converts an iterator of digits into a value.
    ///
    /// The input digits are in ascending order: least- to most-significant.
    fn from_digits_asc<I: Iterator<Item = T>>(base: &T, digits: I) -> Option<Self>;

    /// Converts an iterator of digits into a value.
    ///
    /// The input digits are in descending order: most- to least-significant.
    fn from_digits_desc<I: Iterator<Item = T>>(base: &T, digits: I) -> Option<Self>;
}

/// An iterator over a value's base-$2^k$ digits.
pub trait PowerOf2DigitIterator<T>: Iterator<Item = T> + DoubleEndedIterator<Item = T> {
    fn get(&self, index: u64) -> T;
}

/// Creates an iterator over a value's base-$2^k$ digits.
pub trait PowerOf2DigitIterable<T> {
    type PowerOf2DigitIterator: PowerOf2DigitIterator<T>;

    /// Returns a double-ended iterator over a value's digits in base $2^l$, where $k$ is
    /// `log_base`.
    ///
    /// The iterator ends after the value's most-significant digit.
    fn power_of_2_digits(self, log_base: u64) -> Self::PowerOf2DigitIterator;
}

/// Expresses a value as a [`Vec`] of base-$2^k$ digits, or reads a value from an iterator of
/// base-$2^k$ digits.
///
/// The trait is parameterized by the digit type.
pub trait PowerOf2Digits<T>: Sized {
    /// Returns a [`Vec`] containing the digits of a value in ascending order: least- to
    /// most-significant.
    ///
    /// The base is $2^k$, where $k$ is `log_base`.
    fn to_power_of_2_digits_asc(&self, log_base: u64) -> Vec<T>;

    /// Returns a [`Vec`] containing the digits of a value in descending order: most- to
    /// least-significant.
    ///
    /// The base is $2^k$, where $k$ is `log_base`.
    fn to_power_of_2_digits_desc(&self, log_base: u64) -> Vec<T>;

    /// Converts an iterator of digits into a value.
    ///
    /// The input digits are in ascending order: least- to most-significant. The base is $2^k$,
    /// where $k$ is `log_base`.
    fn from_power_of_2_digits_asc<I: Iterator<Item = T>>(log_base: u64, digits: I) -> Option<Self>;

    /// Converts an iterator of digits into a value.
    ///
    /// The input digits are in descending order: most- to least-significant. The base is $2^k$,
    /// where $k$ is `log_base`.
    fn from_power_of_2_digits_desc<I: Iterator<Item = T>>(log_base: u64, digits: I)
        -> Option<Self>;
}

/// Converts a string slice in a given base to a value.
pub trait FromStringBase: Sized {
    fn from_string_base(base: u8, s: &str) -> Option<Self>;
}

/// Converts a number to a string using a specified base.
pub trait ToStringBase {
    /// Converts a signed number to a lowercase string using a specified base.
    fn to_string_base(&self, base: u8) -> String;

    /// Converts a signed number to an uppercase string using a specified base.
    fn to_string_base_upper(&self, base: u8) -> String;
}

/// Converts a number to a string, possibly in scientific notation.
pub trait ToSci: Sized {
    /// Formats a number, possibly in scientific notation.
    fn fmt_sci(&self, f: &mut Formatter, options: ToSciOptions) -> Result;

    /// Determines whether some formatting options can be applied to a number.
    fn fmt_sci_valid(&self, options: ToSciOptions) -> bool;

    /// Converts a number to a string, possibly in scientific notation.
    fn to_sci_with_options(&self, options: ToSciOptions) -> SciWrapper<Self> {
        SciWrapper { x: self, options }
    }

    /// Converts a number to a string, possibly in scientific notation, using the default
    /// [`ToSciOptions`].
    #[inline]
    fn to_sci(&self) -> SciWrapper<Self> {
        SciWrapper {
            x: self,
            options: ToSciOptions::default(),
        }
    }
}

/// Converts a `&str`, possibly in scientific notation, to a number.
pub trait FromSciString: Sized {
    /// Converts a `&str`, possibly in scientific notation, to a number.
    fn from_sci_string_with_options(s: &str, options: FromSciStringOptions) -> Option<Self>;

    /// Converts a `&str`, possibly in scientific notation, to a number, using the default
    /// [`FromSciStringOptions`].
    #[inline]
    fn from_sci_string(s: &str) -> Option<Self> {
        Self::from_sci_string_with_options(s, FromSciStringOptions::default())
    }
}

/// Converts a value from one type to another. If the conversion fails, the function panics.
///
/// It is recommended that this trait is not implemented directly; it is automatically implemented
/// when [`TryFrom`] is implemented.
pub trait ExactFrom<T>: Sized {
    fn exact_from(value: T) -> Self;
}

/// Converts a value from one type to another. If the conversion fails, the function panics.
///
/// It is recommended that this trait is not implemented directly; it is automatically implemented
/// when [`ExactFrom`] is implemented.
pub trait ExactInto<T> {
    fn exact_into(self) -> T;
}

impl<T, U: TryFrom<T>> ExactFrom<T> for U {
    #[inline]
    fn exact_from(value: T) -> U {
        U::try_from(value).ok().unwrap()
    }
}

impl<T, U: ExactFrom<T>> ExactInto<U> for T {
    #[inline]
    fn exact_into(self) -> U {
        U::exact_from(self)
    }
}

/// Converts a value from one type to another. where if the conversion is not exact the result will
/// wrap around.
///
/// If `WrappingFrom` is implemented, it usually makes sense to implement [`OverflowingFrom`] as
/// well.
pub trait WrappingFrom<T>: Sized {
    fn wrapping_from(value: T) -> Self;
}

/// Converts a value from one type to another, where if the conversion is not exact the result will
/// wrap around.
///
/// It is recommended that this trait is not implemented directly; it is automatically implemented
/// when [`WrappingFrom`] is implemented.
pub trait WrappingInto<T>: Sized {
    fn wrapping_into(self) -> T;
}

impl<T, U: WrappingFrom<T>> WrappingInto<U> for T {
    #[inline]
    fn wrapping_into(self) -> U {
        U::wrapping_from(self)
    }
}

/// Converts a value from one type to another, where if the conversion is not exact the result is
/// set to the maximum or minimum value of the result type, whichever is closer.
pub trait SaturatingFrom<T>: Sized {
    fn saturating_from(value: T) -> Self;
}

/// Converts a value from one type to another, where if the conversion is not exact the result is
/// set to the maximum or minimum value of the result type, whichever is closer.
///
/// It is recommended that this trait is not implemented directly; it is automatically implemented
/// when [`SaturatingFrom`] is implemented.
pub trait SaturatingInto<T>: Sized {
    fn saturating_into(self) -> T;
}

impl<T, U: SaturatingFrom<T>> SaturatingInto<U> for T {
    #[inline]
    fn saturating_into(self) -> U {
        U::saturating_from(self)
    }
}

/// Converts a value from one type to another, where if the conversion is not exact the result will
/// wrap around. The result is returned along with a [`bool`] that indicates whether wrapping has
/// occurred.
///
/// If `OverflowingFrom` is implemented, it usually makes sense to implement [`WrappingFrom`] as
/// well.
pub trait OverflowingFrom<T>: Sized {
    fn overflowing_from(value: T) -> (Self, bool);
}

/// Converts a value from one type to another, where if the conversion is not exact the result will
/// wrap around. The result is returned along with a [`bool`] that indicates whether wrapping has
/// occurred.
///
/// It is recommended that this trait is not implemented directly; it is automatically implemented
/// when [`OverflowingFrom`] is implemented.
pub trait OverflowingInto<T>: Sized {
    fn overflowing_into(self) -> (T, bool);
}

impl<T, U: OverflowingFrom<T>> OverflowingInto<U> for T {
    #[inline]
    fn overflowing_into(self) -> (U, bool) {
        U::overflowing_from(self)
    }
}

/// Converts a value from one type to another, where the conversion is made according to a specified
/// [`RoundingMode`]. An [`Ordering`] is also returned, indicating whether the returned value is
/// less than, equal to, or greater than the original value.
pub trait RoundingFrom<T>: Sized {
    fn rounding_from(value: T, rm: RoundingMode) -> (Self, Ordering);
}

/// Converts a value from one type to another, where the conversion is made according to a specified
/// [`RoundingMode`]. An [`Ordering`] is also returned, indicating whether the returned value is
/// less than, equal to, or greater than the original value.
///
/// It is recommended that this trait is not implemented directly; it is automatically implemented
/// when [`RoundingFrom`] is implemented.
pub trait RoundingInto<T>: Sized {
    fn rounding_into(self, rm: RoundingMode) -> (T, Ordering);
}

impl<T, U: RoundingFrom<T>> RoundingInto<U> for T {
    #[inline]
    fn rounding_into(self, rm: RoundingMode) -> (U, Ordering) {
        U::rounding_from(self, rm)
    }
}

/// Tests whether a value of one type is convertible into a value of another.
///
/// If `ConvertibleFrom<T>` for `Self` is implemented, it usually makes sense to implement
/// [`TryFrom`] for `T` as well.
pub trait ConvertibleFrom<T> {
    fn convertible_from(value: T) -> bool;
}

/// Associates with `Self` a type that's half `Self`'s size.
pub trait HasHalf {
    /// The type that's half the size of `Self`.
    type Half;
}

/// Provides a function to join two pieces into a number. For example, two [`u32`]s may be joined to
/// form a [`u64`].
pub trait JoinHalves: HasHalf {
    /// Joins two values into a single value; the upper, or most-significant, half comes first.
    fn join_halves(upper: Self::Half, lower: Self::Half) -> Self;
}

/// Provides functions to split a number into two pieces. For example, a [`u64`] may be split into
/// two [`u32`]s.
pub trait SplitInHalf: HasHalf {
    /// Extracts the lower, or least-significant, half of a number.
    fn lower_half(&self) -> Self::Half;

    /// Extracts the upper, or most-significant half of a number.
    fn upper_half(&self) -> Self::Half;

    /// Extracts both halves of a number; the upper, or most-significant, half comes first.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(\max(T_U(n), T_L(n)))$
    ///
    /// $M(n) = O(\max(M_U(n), M_L(n)))$
    ///
    /// where $T$ is time, $M$ is additional memory, $T_U$ and $T_L$ are the time complexities of
    /// the [`upper_half`](Self::upper_half) and [`lower_half`](Self::lower_half) functions,
    /// respectively, and $M_U$ and $M_L$ are the memory complexities of the
    /// [`upper_half`](Self::upper_half) and [`lower_half`](Self::lower_half) functions,
    /// respectively.
    #[inline]
    fn split_in_half(&self) -> (Self::Half, Self::Half) {
        (self.upper_half(), self.lower_half())
    }
}

/// Determines whether a number is an integer.
pub trait IsInteger {
    #[allow(clippy::wrong_self_convention)]
    fn is_integer(self) -> bool;
}

/// Converts a number to or from a raw mantissa and exponent.
///
/// See [here](crate::num::basic::floats::PrimitiveFloat) for a definition of raw mantissa and
/// exponent.
pub trait RawMantissaAndExponent<M, E, T = Self>: Sized {
    /// Extracts the raw mantissa and exponent from a number.
    fn raw_mantissa_and_exponent(self) -> (M, E);

    /// Extracts the raw mantissa from a number.
    fn raw_mantissa(self) -> M {
        self.raw_mantissa_and_exponent().0
    }

    /// Extracts the raw exponent from a number.
    fn raw_exponent(self) -> E {
        self.raw_mantissa_and_exponent().1
    }

    /// Constructs a number from its raw mantissa and exponent.
    fn from_raw_mantissa_and_exponent(raw_mantissa: M, raw_exponent: E) -> T;
}

/// Converts a number to or from an integer mantissa and exponent.
///
/// See [here](crate::num::basic::floats::PrimitiveFloat) for a definition of integer mantissa and
/// exponent.
///
/// The mantissa is an odd integer, and the exponent is an integer, such that $x = 2^em$.
pub trait IntegerMantissaAndExponent<M, E, T = Self>: Sized {
    /// Extracts the integer mantissa and exponent from a number.
    fn integer_mantissa_and_exponent(self) -> (M, E);

    /// Extracts the integer mantissa from a number.
    fn integer_mantissa(self) -> M {
        self.integer_mantissa_and_exponent().0
    }

    /// Extracts the integer exponent from a number.
    fn integer_exponent(self) -> E {
        self.integer_mantissa_and_exponent().1
    }

    /// Constructs a number from its integer mantissa and exponent.
    fn from_integer_mantissa_and_exponent(integer_mantissa: M, integer_exponent: E) -> Option<T>;
}

/// Converts a number to or from a scientific mantissa and exponent.
///
/// See [here](crate::num::basic::floats::PrimitiveFloat) for a definition of scientific mantissa
/// and exponent.
pub trait SciMantissaAndExponent<M, E, T = Self>: Sized {
    /// Extracts the scientific mantissa and exponent from a number.
    fn sci_mantissa_and_exponent(self) -> (M, E);

    /// Extracts the scientific mantissa from a number.
    fn sci_mantissa(self) -> M {
        self.sci_mantissa_and_exponent().0
    }

    /// Extracts the scientific exponent from a number.
    fn sci_exponent(self) -> E {
        self.sci_mantissa_and_exponent().1
    }

    /// Constructs a number from its scientific mantissa and exponent.
    fn from_sci_mantissa_and_exponent(sci_mantissa: M, sci_exponent: E) -> Option<T>;
}

/// Converts a slice of one type of value to a single value of another type.
pub trait FromOtherTypeSlice<T: Sized> {
    fn from_other_type_slice(slice: &[T]) -> Self;
}

/// Converts a slice of one type of value to a [`Vec`] of another type.
pub trait VecFromOtherTypeSlice<T: Sized>: Sized {
    fn vec_from_other_type_slice(slice: &[T]) -> Vec<Self>;
}

/// Converts a slice of one type of value to a [`Vec`] of another type.
pub trait VecFromOtherType<T>: Sized {
    fn vec_from_other_type(value: T) -> Vec<Self>;
}