1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::conversion::string::options::{FromSciStringOptions, ToSciOptions};
use crate::num::conversion::string::to_sci::SciWrapper;
use crate::rounding_modes::RoundingMode;
use alloc::string::String;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::fmt::{Formatter, Result};
/// Expresses a value as a [`Vec`] of digits, or reads a value from an iterator of digits.
///
/// The trait is parameterized by `T`, which is both the digit type and the base type.
pub trait Digits<T>: Sized {
/// Returns a [`Vec`] containing the digits of a value in ascending order: least- to
/// most-significant.
fn to_digits_asc(&self, base: &T) -> Vec<T>;
/// Returns a [`Vec`] containing the digits of a value in descending order: most- to
/// least-significant.
fn to_digits_desc(&self, base: &T) -> Vec<T>;
/// Converts an iterator of digits into a value.
///
/// The input digits are in ascending order: least- to most-significant.
fn from_digits_asc<I: Iterator<Item = T>>(base: &T, digits: I) -> Option<Self>;
/// Converts an iterator of digits into a value.
///
/// The input digits are in descending order: most- to least-significant.
fn from_digits_desc<I: Iterator<Item = T>>(base: &T, digits: I) -> Option<Self>;
}
/// An iterator over a value's base-$2^k$ digits.
pub trait PowerOf2DigitIterator<T>: Iterator<Item = T> + DoubleEndedIterator<Item = T> {
fn get(&self, index: u64) -> T;
}
/// Creates an iterator over a value's base-$2^k$ digits.
pub trait PowerOf2DigitIterable<T> {
type PowerOf2DigitIterator: PowerOf2DigitIterator<T>;
/// Returns a double-ended iterator over a value's digits in base $2^l$, where $k$ is
/// `log_base`.
///
/// The iterator ends after the value's most-significant digit.
fn power_of_2_digits(self, log_base: u64) -> Self::PowerOf2DigitIterator;
}
/// Expresses a value as a [`Vec`] of base-$2^k$ digits, or reads a value from an iterator of
/// base-$2^k$ digits.
///
/// The trait is parameterized by the digit type.
pub trait PowerOf2Digits<T>: Sized {
/// Returns a [`Vec`] containing the digits of a value in ascending order: least- to
/// most-significant.
///
/// The base is $2^k$, where $k$ is `log_base`.
fn to_power_of_2_digits_asc(&self, log_base: u64) -> Vec<T>;
/// Returns a [`Vec`] containing the digits of a value in descending order: most- to
/// least-significant.
///
/// The base is $2^k$, where $k$ is `log_base`.
fn to_power_of_2_digits_desc(&self, log_base: u64) -> Vec<T>;
/// Converts an iterator of digits into a value.
///
/// The input digits are in ascending order: least- to most-significant. The base is $2^k$,
/// where $k$ is `log_base`.
fn from_power_of_2_digits_asc<I: Iterator<Item = T>>(log_base: u64, digits: I) -> Option<Self>;
/// Converts an iterator of digits into a value.
///
/// The input digits are in descending order: most- to least-significant. The base is $2^k$,
/// where $k$ is `log_base`.
fn from_power_of_2_digits_desc<I: Iterator<Item = T>>(log_base: u64, digits: I)
-> Option<Self>;
}
/// Converts a string slice in a given base to a value.
pub trait FromStringBase: Sized {
fn from_string_base(base: u8, s: &str) -> Option<Self>;
}
/// Converts a number to a string using a specified base.
pub trait ToStringBase {
/// Converts a signed number to a lowercase string using a specified base.
fn to_string_base(&self, base: u8) -> String;
/// Converts a signed number to an uppercase string using a specified base.
fn to_string_base_upper(&self, base: u8) -> String;
}
/// Converts a number to a string, possibly in scientific notation.
pub trait ToSci: Sized {
/// Formats a number, possibly in scientific notation.
fn fmt_sci(&self, f: &mut Formatter, options: ToSciOptions) -> Result;
/// Determines whether some formatting options can be applied to a number.
fn fmt_sci_valid(&self, options: ToSciOptions) -> bool;
/// Converts a number to a string, possibly in scientific notation.
fn to_sci_with_options(&self, options: ToSciOptions) -> SciWrapper<Self> {
SciWrapper { x: self, options }
}
/// Converts a number to a string, possibly in scientific notation, using the default
/// [`ToSciOptions`].
#[inline]
fn to_sci(&self) -> SciWrapper<Self> {
SciWrapper {
x: self,
options: ToSciOptions::default(),
}
}
}
/// Converts a `&str`, possibly in scientific notation, to a number.
pub trait FromSciString: Sized {
/// Converts a `&str`, possibly in scientific notation, to a number.
fn from_sci_string_with_options(s: &str, options: FromSciStringOptions) -> Option<Self>;
/// Converts a `&str`, possibly in scientific notation, to a number, using the default
/// [`FromSciStringOptions`].
#[inline]
fn from_sci_string(s: &str) -> Option<Self> {
Self::from_sci_string_with_options(s, FromSciStringOptions::default())
}
}
/// Converts a value from one type to another. If the conversion fails, the function panics.
///
/// It is recommended that this trait is not implemented directly; it is automatically implemented
/// when [`TryFrom`] is implemented.
pub trait ExactFrom<T>: Sized {
fn exact_from(value: T) -> Self;
}
/// Converts a value from one type to another. If the conversion fails, the function panics.
///
/// It is recommended that this trait is not implemented directly; it is automatically implemented
/// when [`ExactFrom`] is implemented.
pub trait ExactInto<T> {
fn exact_into(self) -> T;
}
impl<T, U: TryFrom<T>> ExactFrom<T> for U {
#[inline]
fn exact_from(value: T) -> U {
U::try_from(value).ok().unwrap()
}
}
impl<T, U: ExactFrom<T>> ExactInto<U> for T {
#[inline]
fn exact_into(self) -> U {
U::exact_from(self)
}
}
/// Converts a value from one type to another. where if the conversion is not exact the result will
/// wrap around.
///
/// If `WrappingFrom` is implemented, it usually makes sense to implement [`OverflowingFrom`] as
/// well.
pub trait WrappingFrom<T>: Sized {
fn wrapping_from(value: T) -> Self;
}
/// Converts a value from one type to another, where if the conversion is not exact the result will
/// wrap around.
///
/// It is recommended that this trait is not implemented directly; it is automatically implemented
/// when [`WrappingFrom`] is implemented.
pub trait WrappingInto<T>: Sized {
fn wrapping_into(self) -> T;
}
impl<T, U: WrappingFrom<T>> WrappingInto<U> for T {
#[inline]
fn wrapping_into(self) -> U {
U::wrapping_from(self)
}
}
/// Converts a value from one type to another, where if the conversion is not exact the result is
/// set to the maximum or minimum value of the result type, whichever is closer.
pub trait SaturatingFrom<T>: Sized {
fn saturating_from(value: T) -> Self;
}
/// Converts a value from one type to another, where if the conversion is not exact the result is
/// set to the maximum or minimum value of the result type, whichever is closer.
///
/// It is recommended that this trait is not implemented directly; it is automatically implemented
/// when [`SaturatingFrom`] is implemented.
pub trait SaturatingInto<T>: Sized {
fn saturating_into(self) -> T;
}
impl<T, U: SaturatingFrom<T>> SaturatingInto<U> for T {
#[inline]
fn saturating_into(self) -> U {
U::saturating_from(self)
}
}
/// Converts a value from one type to another, where if the conversion is not exact the result will
/// wrap around. The result is returned along with a [`bool`] that indicates whether wrapping has
/// occurred.
///
/// If `OverflowingFrom` is implemented, it usually makes sense to implement [`WrappingFrom`] as
/// well.
pub trait OverflowingFrom<T>: Sized {
fn overflowing_from(value: T) -> (Self, bool);
}
/// Converts a value from one type to another, where if the conversion is not exact the result will
/// wrap around. The result is returned along with a [`bool`] that indicates whether wrapping has
/// occurred.
///
/// It is recommended that this trait is not implemented directly; it is automatically implemented
/// when [`OverflowingFrom`] is implemented.
pub trait OverflowingInto<T>: Sized {
fn overflowing_into(self) -> (T, bool);
}
impl<T, U: OverflowingFrom<T>> OverflowingInto<U> for T {
#[inline]
fn overflowing_into(self) -> (U, bool) {
U::overflowing_from(self)
}
}
/// Converts a value from one type to another, where the conversion is made according to a specified
/// [`RoundingMode`]. An [`Ordering`] is also returned, indicating whether the returned value is
/// less than, equal to, or greater than the original value.
pub trait RoundingFrom<T>: Sized {
fn rounding_from(value: T, rm: RoundingMode) -> (Self, Ordering);
}
/// Converts a value from one type to another, where the conversion is made according to a specified
/// [`RoundingMode`]. An [`Ordering`] is also returned, indicating whether the returned value is
/// less than, equal to, or greater than the original value.
///
/// It is recommended that this trait is not implemented directly; it is automatically implemented
/// when [`RoundingFrom`] is implemented.
pub trait RoundingInto<T>: Sized {
fn rounding_into(self, rm: RoundingMode) -> (T, Ordering);
}
impl<T, U: RoundingFrom<T>> RoundingInto<U> for T {
#[inline]
fn rounding_into(self, rm: RoundingMode) -> (U, Ordering) {
U::rounding_from(self, rm)
}
}
/// Tests whether a value of one type is convertible into a value of another.
///
/// If `ConvertibleFrom<T>` for `Self` is implemented, it usually makes sense to implement
/// [`TryFrom`] for `T` as well.
pub trait ConvertibleFrom<T> {
fn convertible_from(value: T) -> bool;
}
/// Associates with `Self` a type that's half `Self`'s size.
pub trait HasHalf {
/// The type that's half the size of `Self`.
type Half;
}
/// Provides a function to join two pieces into a number. For example, two [`u32`]s may be joined to
/// form a [`u64`].
pub trait JoinHalves: HasHalf {
/// Joins two values into a single value; the upper, or most-significant, half comes first.
fn join_halves(upper: Self::Half, lower: Self::Half) -> Self;
}
/// Provides functions to split a number into two pieces. For example, a [`u64`] may be split into
/// two [`u32`]s.
pub trait SplitInHalf: HasHalf {
/// Extracts the lower, or least-significant, half of a number.
fn lower_half(&self) -> Self::Half;
/// Extracts the upper, or most-significant half of a number.
fn upper_half(&self) -> Self::Half;
/// Extracts both halves of a number; the upper, or most-significant, half comes first.
///
/// # Worst-case complexity
/// $T(n) = O(\max(T_U(n), T_L(n)))$
///
/// $M(n) = O(\max(M_U(n), M_L(n)))$
///
/// where $T$ is time, $M$ is additional memory, $T_U$ and $T_L$ are the time complexities of
/// the [`upper_half`](Self::upper_half) and [`lower_half`](Self::lower_half) functions,
/// respectively, and $M_U$ and $M_L$ are the memory complexities of the
/// [`upper_half`](Self::upper_half) and [`lower_half`](Self::lower_half) functions,
/// respectively.
#[inline]
fn split_in_half(&self) -> (Self::Half, Self::Half) {
(self.upper_half(), self.lower_half())
}
}
/// Determines whether a number is an integer.
pub trait IsInteger {
#[allow(clippy::wrong_self_convention)]
fn is_integer(self) -> bool;
}
/// Converts a number to or from a raw mantissa and exponent.
///
/// See [here](crate::num::basic::floats::PrimitiveFloat) for a definition of raw mantissa and
/// exponent.
pub trait RawMantissaAndExponent<M, E, T = Self>: Sized {
/// Extracts the raw mantissa and exponent from a number.
fn raw_mantissa_and_exponent(self) -> (M, E);
/// Extracts the raw mantissa from a number.
fn raw_mantissa(self) -> M {
self.raw_mantissa_and_exponent().0
}
/// Extracts the raw exponent from a number.
fn raw_exponent(self) -> E {
self.raw_mantissa_and_exponent().1
}
/// Constructs a number from its raw mantissa and exponent.
fn from_raw_mantissa_and_exponent(raw_mantissa: M, raw_exponent: E) -> T;
}
/// Converts a number to or from an integer mantissa and exponent.
///
/// See [here](crate::num::basic::floats::PrimitiveFloat) for a definition of integer mantissa and
/// exponent.
///
/// The mantissa is an odd integer, and the exponent is an integer, such that $x = 2^em$.
pub trait IntegerMantissaAndExponent<M, E, T = Self>: Sized {
/// Extracts the integer mantissa and exponent from a number.
fn integer_mantissa_and_exponent(self) -> (M, E);
/// Extracts the integer mantissa from a number.
fn integer_mantissa(self) -> M {
self.integer_mantissa_and_exponent().0
}
/// Extracts the integer exponent from a number.
fn integer_exponent(self) -> E {
self.integer_mantissa_and_exponent().1
}
/// Constructs a number from its integer mantissa and exponent.
fn from_integer_mantissa_and_exponent(integer_mantissa: M, integer_exponent: E) -> Option<T>;
}
/// Converts a number to or from a scientific mantissa and exponent.
///
/// See [here](crate::num::basic::floats::PrimitiveFloat) for a definition of scientific mantissa
/// and exponent.
pub trait SciMantissaAndExponent<M, E, T = Self>: Sized {
/// Extracts the scientific mantissa and exponent from a number.
fn sci_mantissa_and_exponent(self) -> (M, E);
/// Extracts the scientific mantissa from a number.
fn sci_mantissa(self) -> M {
self.sci_mantissa_and_exponent().0
}
/// Extracts the scientific exponent from a number.
fn sci_exponent(self) -> E {
self.sci_mantissa_and_exponent().1
}
/// Constructs a number from its scientific mantissa and exponent.
fn from_sci_mantissa_and_exponent(sci_mantissa: M, sci_exponent: E) -> Option<T>;
}
/// Converts a slice of one type of value to a single value of another type.
pub trait FromOtherTypeSlice<T: Sized> {
fn from_other_type_slice(slice: &[T]) -> Self;
}
/// Converts a slice of one type of value to a [`Vec`] of another type.
pub trait VecFromOtherTypeSlice<T: Sized>: Sized {
fn vec_from_other_type_slice(slice: &[T]) -> Vec<Self>;
}
/// Converts a slice of one type of value to a [`Vec`] of another type.
pub trait VecFromOtherType<T>: Sized {
fn vec_from_other_type(value: T) -> Vec<Self>;
}