1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::{ExactFrom, WrappingFrom};
use crate::num::factorization::prime_sieve::{
    id_to_n, limbs_prime_sieve_size, limbs_prime_sieve_u64,
};
use crate::num::factorization::traits::Primes;
use crate::num::logic::traits::TrailingZeros;
use alloc::vec::Vec;
use core::marker::PhantomData;

// This differs from the identically-named function in malachite-nz; this one returns None if there
// are no more false bits.
fn limbs_index_of_next_false_bit<T: PrimitiveUnsigned>(xs: &[T], start: u64) -> Option<u64> {
    let starting_index = usize::exact_from(start >> T::LOG_WIDTH);
    if starting_index >= xs.len() {
        return None;
    }
    if let Some(result) = xs[starting_index].index_of_next_false_bit(start & T::WIDTH_MASK) {
        if result != T::WIDTH {
            return Some((u64::wrapping_from(starting_index) << T::LOG_WIDTH) + result);
        }
    }
    if starting_index == xs.len() - 1 {
        return None;
    }
    let false_index = starting_index
        + 1
        + xs[starting_index + 1..]
            .iter()
            .take_while(|&&y| y == T::MAX)
            .count();
    if false_index == xs.len() {
        None
    } else {
        Some(
            (u64::exact_from(false_index) << T::LOG_WIDTH)
                + TrailingZeros::trailing_zeros(!xs[false_index]),
        )
    }
}

/// An iterator over that generates all primes less than a given value.
///
/// This `struct` is created by [`Primes::primes_less_than`] and
/// [`Primes::primes_less_than_or_equal_to`]; see their documentation for more.
#[derive(Clone, Debug)]
pub struct PrimesLessThanIterator<T: PrimitiveUnsigned> {
    i: u8,
    j: u64,
    sieve: Vec<u64>,
    phantom: PhantomData<*const T>,
}

impl<T: PrimitiveUnsigned> PrimesLessThanIterator<T> {
    fn new(n: T) -> PrimesLessThanIterator<T> {
        let n: u64 = n.saturating_into();
        let mut sieve;
        if n < 5 {
            sieve = Vec::with_capacity(0);
        } else {
            sieve = alloc::vec![0; limbs_prime_sieve_size::<u64>(n)];
            limbs_prime_sieve_u64(&mut sieve, n);
        }
        PrimesLessThanIterator {
            i: 0,
            j: n,
            sieve,
            phantom: PhantomData,
        }
    }
}

impl<T: PrimitiveUnsigned> Iterator for PrimesLessThanIterator<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        match self.i {
            0 => {
                if self.j < 2 {
                    None
                } else {
                    self.i = 1;
                    Some(T::TWO)
                }
            }
            1 => {
                if self.j == 2 {
                    None
                } else {
                    self.i = 2;
                    self.j = 0;
                    Some(T::from(3u8))
                }
            }
            _ => {
                self.j = limbs_index_of_next_false_bit(&self.sieve, self.j)? + 1;
                Some(T::exact_from(id_to_n(self.j)))
            }
        }
    }
}

/// An iterator over that generates all primes.
///
/// This `struct` is created by [`Primes::primes`]; see its documentation for more.
#[derive(Clone, Debug)]
pub struct PrimesIterator<T: PrimitiveUnsigned> {
    limit: T,
    xs: PrimesLessThanIterator<T>,
}

impl<T: PrimitiveUnsigned> PrimesIterator<T> {
    fn new() -> PrimesIterator<T> {
        let limit = T::saturating_from(256u16);
        PrimesIterator {
            limit,
            xs: PrimesLessThanIterator::new(limit),
        }
    }
}

impl<T: PrimitiveUnsigned> Iterator for PrimesIterator<T> {
    type Item = T;

    fn next(&mut self) -> Option<T> {
        loop {
            let p = self.xs.next();
            if p.is_some() {
                return p;
            } else if self.limit == T::MAX {
                return None;
            }
            self.limit.saturating_mul_assign(T::TWO);
            let j = self.xs.j;
            self.xs = T::primes_less_than_or_equal_to(&self.limit);
            self.xs.i = 3;
            self.xs.j = j;
        }
    }
}

macro_rules! impl_primes {
    ($t:ident) => {
        impl Primes for $t {
            type I = PrimesIterator<$t>;
            type LI = PrimesLessThanIterator<$t>;

            /// Returns an iterator that generates all primes less than a given value.
            ///
            /// The iterator produced by `primes_less_than(n)` generates the same primes as the
            /// iterator produced by `primes().take_while(|&p| p < n)`, but the latter would be
            /// slower because it doesn't know in advance how large its prime sieve should be, and
            /// might have to create larger and larger prime sieves.
            ///
            /// # Worst-case complexity (amortized)
            /// $T(i) = O(\log \log i)$
            ///
            /// $M(i) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $i$ is the iteration index.
            ///
            /// # Examples
            /// See [here](super::primes#primes_less_than).
            #[inline]
            fn primes_less_than(n: &$t) -> PrimesLessThanIterator<$t> {
                PrimesLessThanIterator::new(n.saturating_sub(1))
            }

            /// Returns an iterator that generates all primes less than or equal to a given value.
            ///
            /// The iterator produced by `primes_less_than_or_equal_to(n)` generates the same primes
            /// as the iterator produced by `primes().take_while(|&p| p <= n)`, but the latter would
            /// be slower because it doesn't know in advance how large its prime sieve should be,
            /// and might have to create larger and larger prime sieves.
            ///
            /// # Worst-case complexity (amortized)
            /// $T(i) = O(\log \log i)$
            ///
            /// $M(i) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $i$ is the iteration index.
            ///
            /// # Examples
            /// See [here](super::primes#primes_less_than_or_equal_to).
            #[inline]
            fn primes_less_than_or_equal_to(&n: &$t) -> PrimesLessThanIterator<$t> {
                PrimesLessThanIterator::new(n)
            }

            /// Returns all primes that fit into the specified type.
            ///
            /// The iterator produced by `primes(n)` generates the same primes as the iterator
            /// produced by `primes_less_than_or_equal_to(T::MAX)`. If you really need to generate
            /// _every_ prime, and `T` is `u32` or smaller, then you should use the latter, as it
            /// will allocate all the needed memory at once. If `T` is `u64` or larger, or if you
            /// probably don't need every prime, then `primes()` will be faster as it won't allocate
            /// too much memory right away.
            ///
            /// # Worst-case complexity (amortized)
            /// $T(i) = O(\log \log i)$
            ///
            /// $M(i) = O(1)$
            ///
            /// where $T$ is time, $M$ is additional memory, and $i$ is the iteration index.
            ///
            /// # Examples
            /// See [here](super::primes#primes).
            #[inline]
            fn primes() -> PrimesIterator<$t> {
                PrimesIterator::new()
            }
        }
    };
}
apply_to_unsigneds!(impl_primes);

/// An iterator that generates `bool`s up to a certain limit, where the $n$th `bool` is `true` if
/// and only if $n$ is prime. See [`prime_indicator_sequence_less_than`] for more information.
#[derive(Clone, Debug)]
pub struct PrimeIndicatorSequenceLessThan {
    primes: PrimesLessThanIterator<u64>,
    limit: u64,
    i: u64,
    next_prime: u64,
}

impl Iterator for PrimeIndicatorSequenceLessThan {
    type Item = bool;

    fn next(&mut self) -> Option<bool> {
        if self.i >= self.limit {
            None
        } else if self.i == self.next_prime {
            self.i += 1;
            self.next_prime = self.primes.next().unwrap_or(0);
            Some(true)
        } else {
            self.i += 1;
            Some(false)
        }
    }
}

/// Returns an iterator that generates an sequence of `bool`s, where the $n$th `bool` is `true` if
/// and only if $n$ is prime. The first `bool` generated has index 1, and the last one has index
/// $\max(0,\ell-1)$, where $\ell$ is `limit`.
///
/// The output length is $max(0,\ell-1)$, where $\ell$ is `limit`.
///
/// # Worst-case complexity (amortized)
/// $T(i) = O(\log \log \log i)$
///
/// $M(i) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration index.
///
/// # Examples
/// ```
/// use malachite_base::num::factorization::primes::prime_indicator_sequence_less_than;
///
/// let s: String = prime_indicator_sequence_less_than(101)
///     .map(|b| if b { '1' } else { '0' })
///     .collect();
/// assert_eq!(
///     s,
///     "01101010001010001010001000001010000010001010001000001000001010000010001010000010001000001\
///     00000001000"
/// )
/// ```
pub fn prime_indicator_sequence_less_than(limit: u64) -> PrimeIndicatorSequenceLessThan {
    let mut primes = u64::primes_less_than(&limit);
    primes.next(); // skip 2
    PrimeIndicatorSequenceLessThan {
        primes,
        limit,
        i: 1,
        next_prime: 2,
    }
}

/// Returns an iterator that generates an sequence of `bool`s, where the $n$th `bool` is `true` if
/// and only if $n$ is prime. The first `bool` generated has index 1, and the last one has index
/// `limit`.
///
/// The output length is `limit`.
///
/// # Worst-case complexity (amortized)
/// $T(i) = O(\log \log \log i)$
///
/// $M(i) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration index.
///
/// # Examples
/// ```
/// use malachite_base::num::factorization::primes::prime_indicator_sequence_less_than_or_equal_to;
///
/// let s: String = prime_indicator_sequence_less_than_or_equal_to(100)
///     .map(|b| if b { '1' } else { '0' })
///     .collect();
/// assert_eq!(
///     s,
///     "01101010001010001010001000001010000010001010001000001000001010000010001010000010001000001\
///     00000001000"
/// )
/// ```
pub fn prime_indicator_sequence_less_than_or_equal_to(
    limit: u64,
) -> PrimeIndicatorSequenceLessThan {
    prime_indicator_sequence_less_than(limit.checked_add(1).unwrap())
}

/// An iterator that generates `bool`s, where the $n$th `bool` is `true` if and only if $n$ is
/// prime. See [`prime_indicator_sequence`] for more information.
#[derive(Clone, Debug)]
pub struct PrimeIndicatorSequence {
    primes: PrimesIterator<u64>,
    i: u64,
    next_prime: u64,
}

impl Iterator for PrimeIndicatorSequence {
    type Item = bool;

    fn next(&mut self) -> Option<bool> {
        Some(if self.i == self.next_prime {
            self.i += 1;
            self.next_prime = self.primes.next().unwrap();
            true
        } else {
            self.i += 1;
            false
        })
    }
}

/// Returns an iterator that generates an infinite sequence of `bool`s, where the $n$th `bool` is
/// `true` if and only if $n$ is prime. The first `bool` generated has index 1.
///
/// The output length is infinite.
///
/// # Worst-case complexity (amortized)
/// $T(i) = O(\log \log \log i)$
///
/// $M(i) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $i$ is the iteration index.
///
/// # Examples
/// ```
/// use malachite_base::num::factorization::primes::prime_indicator_sequence;
///
/// let s: String = prime_indicator_sequence()
///     .take(100)
///     .map(|b| if b { '1' } else { '0' })
///     .collect();
/// assert_eq!(
///     s,
///     "01101010001010001010001000001010000010001010001000001000001010000010001010000010001000001\
///     00000001000"
/// )
/// ```
pub fn prime_indicator_sequence() -> PrimeIndicatorSequence {
    let mut primes = u64::primes();
    primes.next(); // skip 2
    PrimeIndicatorSequence {
        primes,
        i: 1,
        next_prime: 2,
    }
}