1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::logic::traits::BitAccess;
fn get_bit_unsigned<T: PrimitiveUnsigned>(x: &T, index: u64) -> bool {
index < T::WIDTH && (*x >> index).odd()
}
fn set_bit_unsigned<T: PrimitiveUnsigned>(x: &mut T, index: u64) {
if index < T::WIDTH {
*x |= T::power_of_2(index);
} else {
panic!(
"Cannot set bit {} in non-negative value of width {}",
index,
T::WIDTH
);
}
}
fn clear_bit_unsigned<T: PrimitiveUnsigned>(x: &mut T, index: u64) {
if index < T::WIDTH {
*x &= !T::power_of_2(index);
}
}
macro_rules! impl_bit_access_unsigned {
($t:ident) => {
impl BitAccess for $t {
/// Determines whether the $i$th bit of an unsigned primitive integer, or the
/// coefficient of $2^i$ in its binary expansion, is 0 or 1.
///
/// `false` means 0 and `true` means 1. Getting bits beyond the type's width is allowed;
/// those bits are false.
///
/// Let
/// $$
/// n = \sum_{i=0}^\infty 2^{b_i},
/// $$
/// where for all $i$, $b_i\in \\{0, 1\\}$; so finitely many of the bits are 1, and the
/// rest are 0. Then $f(n, j) = (b_j = 1)$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::bit_access#get_bit).
#[inline]
fn get_bit(&self, index: u64) -> bool {
get_bit_unsigned(self, index)
}
/// Sets the $i$th bit of an unsigned primitive integer, or the coefficient of $2^i$ in
/// its binary expansion, to 1.
///
/// Setting bits beyond the type's width is disallowed.
///
/// Let
/// $$
/// n = \sum_{i=0}^{W-1} 2^{b_i},
/// $$
/// where for all $i$, $b_i\in \\{0, 1\\}$, and $W$ is the width of the type. Then
/// $$
/// n \gets \\begin{cases}
/// n + 2^j & \text{if} \\quad b_j = 0, \\\\
/// n & \text{otherwise},
/// \\end{cases}
/// $$
/// where $j < W$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if $i \geq W$, where $i$ is `index` and $W$ is `$t::WIDTH`.
///
/// # Examples
/// See [here](super::bit_access#set_bit).
#[inline]
fn set_bit(&mut self, index: u64) {
set_bit_unsigned(self, index)
}
/// Sets the $i$th bit of an unsigned primitive integer, or the coefficient of $2^i$ in
/// its binary expansion, to 0.
///
/// Clearing bits beyond the type's width is allowed; since those bits are already
/// `false`, clearing them does nothing.
///
/// Let
/// $$
/// n = \sum_{i=0}^{W-1} 2^{b_i},
/// $$
/// where for all $i$, $b_i\in \\{0, 1\\}$, and $W$ is the width of the type. Then
/// $$
/// n \gets \\begin{cases}
/// n - 2^j & \text{if} \\quad b_j = 1, \\\\
/// n & \text{otherwise}.
/// \\end{cases}
/// $$
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::bit_access#clear_bit).
#[inline]
fn clear_bit(&mut self, index: u64) {
clear_bit_unsigned(self, index)
}
}
};
}
apply_to_unsigneds!(impl_bit_access_unsigned);
fn get_bit_signed<T: PrimitiveSigned>(x: &T, index: u64) -> bool {
if index < T::WIDTH {
(*x >> index).odd()
} else {
*x < T::ZERO
}
}
fn set_bit_signed<T: PrimitiveSigned>(x: &mut T, index: u64) {
if index < T::WIDTH {
*x |= T::ONE << index;
} else if *x >= T::ZERO {
panic!(
"Cannot set bit {} in non-negative value of width {}",
index,
T::WIDTH
);
}
}
fn clear_bit_signed<T: PrimitiveSigned>(x: &mut T, index: u64) {
if index < T::WIDTH {
*x &= !(T::ONE << index);
} else if *x < T::ZERO {
panic!(
"Cannot clear bit {} in negative value of width {}",
index,
T::WIDTH
);
}
}
macro_rules! impl_bit_access_signed {
($t:ident) => {
impl BitAccess for $t {
/// Determines whether the $i$th bit of a signed primitive integer is 0 or 1.
///
/// `false` means 0 and `true` means 1. Getting bits beyond the type's width is allowed;
/// those bits are `true` if the value is negative, and `false` otherwise.
///
/// If $n \geq 0$, let
/// $$
/// n = \sum_{i=0}^\infty 2^{b_i},
/// $$
/// where for all $i$, $b_i\in \\{0, 1\\}$; so finitely many of the bits are 1, and the
/// rest are 0. Then $f(n, i) = (b_i = 1)$.
///
/// If $n < 0$, let
/// $$
/// 2^W + n = \sum_{i=0}^{W-1} 2^{b_i},
/// $$
/// where
/// - $W$ is the type's width
/// - for all $i$, $b_i\in \\{0, 1\\}$, and $b_i = 1$ for $i \geq W$.
///
/// Then $f(n, j) = (b_j = 1)$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Examples
/// See [here](super::bit_access#get_bit).
#[inline]
fn get_bit(&self, index: u64) -> bool {
get_bit_signed(self, index)
}
/// Sets the $i$th bit of a signed primitive integer to 1.
///
/// Setting bits beyond the type's width is disallowed if the number is non-negative.
///
/// If $n \geq 0$ and $j \neq W - 1$, let
/// $$
/// n = \sum_{i=0}^{W-1} 2^{b_i};
/// $$
/// but if $n < 0$ or $j = W - 1$, let
/// $$
/// 2^W + n = \sum_{i=0}^{W-1} 2^{b_i},
/// $$
/// where for all $i$, $b_i\in \\{0, 1\\}$, and $W$ is the width of the type. Then
/// $$
/// n \gets \\begin{cases}
/// n + 2^j & \text{if} \\quad b_j = 0, \\\\
/// n & \text{otherwise},
/// \\end{cases}
/// $$
/// where $n < 0$ or $j < W$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if $n \geq 0$ and $i \geq W$, where $n$ is `self`, $i$ is `index` and $W$ is
/// the width of the type.
///
/// # Examples
/// See [here](super::bit_access#set_bit).
#[inline]
fn set_bit(&mut self, index: u64) {
set_bit_signed(self, index)
}
/// Sets the $i$th bit of a signed primitive integer to 0.
///
/// Clearing bits beyond the type's width is disallowed if the number is negative.
///
/// If $n \geq 0$ or $j = W - 1$, let
/// $$
/// n = \sum_{i=0}^{W-1} 2^{b_i};
/// $$
/// but if $n < 0$ or $j = W - 1$, let
/// $$
/// 2^W + n = \sum_{i=0}^{W-1} 2^{b_i},
/// $$
/// where for all $i$, $b_i\in \\{0, 1\\}$ and $W$ is the width of the type. Then
/// $$
/// n \gets \\begin{cases}
/// n - 2^j & \text{if} \\quad b_j = 1, \\\\
/// n & \text{otherwise},
/// \\end{cases}
/// $$
/// where $n \geq 0$ or $j < W$.
///
/// # Worst-case complexity
/// Constant time and additional memory.
///
/// # Panics
/// Panics if $n < 0$ and $i \geq W$, where $n$ is `self`, $i$ is `index` and $W$ is the
/// width of the type.
///
/// # Examples
/// See [here](super::bit_access#clear_bit).
#[inline]
fn clear_bit(&mut self, index: u64) {
clear_bit_signed(self, index)
}
}
};
}
apply_to_signeds!(impl_bit_access_signed);