1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::arithmetic::traits::{ModPowerOf2, UnsignedAbs};
use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::WrappingFrom;
use crate::num::logic::traits::{BitBlockAccess, LeadingZeros};
use core::cmp::min;

const ERROR_MESSAGE: &str = "Result exceeds width of output type";

fn get_bits_unsigned<T: PrimitiveUnsigned>(x: &T, start: u64, end: u64) -> T {
    assert!(start <= end);
    if start >= T::WIDTH {
        T::ZERO
    } else {
        (*x >> start).mod_power_of_2(end - start)
    }
}

fn assign_bits_unsigned<T: PrimitiveUnsigned>(x: &mut T, start: u64, end: u64, bits: &T) {
    assert!(start <= end);
    let width = T::WIDTH;
    let bits_width = end - start;
    let bits = bits.mod_power_of_2(bits_width);
    if bits != T::ZERO && LeadingZeros::leading_zeros(bits) < start {
        panic!("{}", ERROR_MESSAGE);
    } else if start < width {
        *x &= !(T::MAX.mod_power_of_2(min(bits_width, width - start)) << start);
        *x |= bits << start;
    }
}

macro_rules! impl_bit_block_access_unsigned {
    ($t:ident) => {
        impl BitBlockAccess for $t {
            type Bits = $t;

            /// Extracts a block of adjacent bits from a number.
            ///
            /// The first index is `start` and last index is `end - 1`.
            ///
            /// The block of bits has the same type as the input. If `end` is greater than the
            /// type's width, the high bits of the result are all 0.
            ///
            /// Let
            /// $$
            /// n = \sum_{i=0}^\infty 2^{b_i},
            /// $$
            /// where for all $i$, $b_i\in \\{0, 1\\}$; so finitely many of the bits are 1, and the
            /// rest are 0. Then
            /// $$
            /// f(n, p, q) = \sum_{i=p}^{q-1} 2^{b_{i-p}}.
            /// $$
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Panics
            /// Panics if `start < end`.
            ///
            /// # Examples
            /// See [here](super::bit_block_access#get_bits).
            #[inline]
            fn get_bits(&self, start: u64, end: u64) -> Self {
                get_bits_unsigned(self, start, end)
            }

            /// Replaces a block of adjacent bits in a number with other bits.
            ///
            /// The least-significant `end - start` bits of `bits` are assigned to bits `start`
            /// through `end - 1`, inclusive, of `self`.
            ///
            /// The block of bits has the same type as the input. If `bits` has fewer bits than `end
            /// - start`, the high bits are interpreted as 0. If `end` is greater than the type's
            /// width, the high bits of `bits` must be 0.
            ///
            /// Let
            /// $$
            /// n = \sum_{i=0}^{W-1} 2^{b_i},
            /// $$
            /// where for all $i$, $b_i\in \\{0, 1\\}$ and $W$ is `$t::WIDTH`. Let
            /// $$
            /// m = \sum_{i=0}^k 2^{d_i},
            /// $$
            /// where for all $i$, $d_i\in \\{0, 1\\}$. Also, let $p, q \in \mathbb{N}$, where $d_i
            /// = 0$ for all $i \geq W + p$.
            ///
            /// Then
            /// $$
            /// n \gets \sum_{i=0}^{W-1} 2^{c_i},
            /// $$
            /// where
            /// $$
            /// \\{c_0, c_1, c_2, \ldots, c_ {W-1}\\} =
            /// \\{b_0, b_1, b_2, \ldots, b_{p-1}, d_0, d_1, \ldots, d_{p-q-1}, b_q, \ldots,
            /// b_ {W-1}\\}.
            /// $$
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Panics
            /// Let `W` be the type's width. Panics if `start < end`, or if `end > W` and bits `W -
            /// start` through `end - start` of `bits` are nonzero.
            ///
            /// # Examples
            /// See [here](super::bit_block_access#assign_bits).
            #[inline]
            fn assign_bits(&mut self, start: u64, end: u64, bits: &Self::Bits) {
                assign_bits_unsigned(self, start, end, bits)
            }
        }
    };
}
apply_to_unsigneds!(impl_bit_block_access_unsigned);

fn get_bits_signed<T: ModPowerOf2<Output = U> + PrimitiveSigned, U>(
    x: &T,
    start: u64,
    end: u64,
) -> U {
    assert!(start <= end);
    (if start >= T::WIDTH {
        -T::from(*x < T::ZERO)
    } else {
        *x >> start
    })
    .mod_power_of_2(end - start)
}

fn assign_bits_signed<
    T: PrimitiveSigned + UnsignedAbs<Output = U> + WrappingFrom<U>,
    U: PrimitiveUnsigned,
>(
    x: &mut T,
    start: u64,
    end: u64,
    bits: &U,
) {
    assert!(start <= end);
    if *x >= T::ZERO {
        let mut abs_x = x.unsigned_abs();
        abs_x.assign_bits(start, end, bits);
        assert!(!abs_x.get_highest_bit(), "{ERROR_MESSAGE}");
        *x = T::wrapping_from(abs_x);
    } else {
        let width = T::WIDTH - 1;
        let bits_width = end - start;
        let bits = bits.mod_power_of_2(bits_width);
        let max = U::MAX;
        if bits_width > width + 1 {
            panic!("{}", ERROR_MESSAGE);
        } else if start >= width {
            assert!(bits == max.mod_power_of_2(bits_width), "{ERROR_MESSAGE}");
        } else {
            let lower_width = width - start;
            if end > width && bits >> lower_width != max.mod_power_of_2(end - width) {
                panic!("{}", ERROR_MESSAGE);
            } else {
                *x &=
                    T::wrapping_from(!(max.mod_power_of_2(min(bits_width, lower_width)) << start));
                *x |= T::wrapping_from(bits << start);
            }
        }
    }
}

macro_rules! impl_bit_block_access_signed {
    ($u:ident, $s:ident) => {
        impl BitBlockAccess for $s {
            type Bits = $u;

            /// Extracts a block of adjacent bits from a number.
            ///
            /// The first index is `start` and last index is `end - 1`.
            ///
            /// The type of the block of bits is the unsigned version of the input type. If `end` is
            /// greater than the type's width, the high bits of the result are all 0, or all 1,
            /// depending on the input value's sign; and if the input is negative and `end - start`
            /// is greater than the type's width, the function panics.
            ///
            /// If $n \geq 0$, let
            /// $$
            /// n = \sum_{i=0}^\infty 2^{b_i},
            /// $$
            /// where for all $i$, $b_i\in \\{0, 1\\}$; so finitely many of the bits are 1, and the
            /// rest are 0. Then
            /// $$
            /// f(n, p, q) = \sum_{i=p}^{q-1} 2^{b_{i-p}}.
            /// $$
            ///
            /// If $n < 0$, let
            /// $$
            /// 2^W + n = \sum_{i=0}^{W-1} 2^{b_i},
            /// $$
            /// where
            /// - $W$ is the type's width
            /// - for all $i$, $b_i\in \\{0, 1\\}$, and $b_i = 1$ for $i \geq W$.
            ///
            /// Then
            /// $$
            /// f(n, p, q) = \sum_{i=p}^{q-1} 2^{b_{i-p}}.
            /// $$
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Panics
            /// Let `W` be the type's width. Panics if `start < end` or (`self < 0` and `end - start
            /// > W`).
            ///
            /// # Examples
            /// See [here](super::bit_block_access#get_bits).
            #[inline]
            fn get_bits(&self, start: u64, end: u64) -> Self::Bits {
                get_bits_signed(self, start, end)
            }

            /// Replaces a block of adjacent bits in a number with other bits.
            ///
            /// The least-significant `end - start` bits of `bits` are assigned to bits `start`
            /// through `end - 1`, inclusive, of `self`.
            ///
            /// The type of the block of bits is the unsigned version of the input type. If `bits`
            /// has fewer bits than `end - start`, the high bits are interpreted as 0 or 1,
            /// depending on the sign of `self`. If `end` is greater than the type's width, the high
            /// bits of `bits` must be 0 or 1, depending on the sign of `self`.
            ///
            /// The sign of `self` remains unchanged, since only a finite number of bits are changed
            /// and the sign is determined by the implied infinite prefix of bits.
            ///
            /// If $n \geq 0$ and $j \neq W - 1$, let
            /// $$
            /// n = \sum_{i=0}^{W-1} 2^{b_i},
            /// $$
            /// where for all $i$, $b_i\in \\{0, 1\\}$ and $W$ is `$t::WIDTH`. Let
            /// $$
            /// m = \sum_{i=0}^k 2^{d_i},
            /// $$
            /// where for all $i$, $d_i\in \\{0, 1\\}$. Also, let $p, q \in \mathbb{N}$, where $d_i
            /// = 0$ for all $i \geq W + p - 1$. Then
            /// $$
            /// n \gets \sum_{i=0}^{W-1} 2^{c_i},
            /// $$
            /// where
            /// $$
            /// \\{c_0, c_1, c_2, \ldots, c_ {W-1}\\} =
            /// \\{b_0, b_1, b_2, \ldots, b_{p-1}, d_0, d_1, \ldots, d_{p-q-1}, b_q, \ldots,
            /// b_ {W-1}\\}.
            /// $$
            ///
            /// If $n < 0$ or $j = W - 1$, let
            /// $$
            /// 2^W + n = \sum_{i=0}^{W-1} 2^{b_i},
            /// $$
            /// where for all $i$, $b_i\in \\{0, 1\\}$ and $W$ is `$t::WIDTH`. Let
            /// $$
            /// m = \sum_{i=0}^k 2^{d_i},
            /// $$
            /// where for all $i$, $d_i\in \\{0, 1\\}$. Also, let $p, q \in \mathbb{N}$, where $d_i
            /// = 1$ for all $i \geq W + p - 1$. Then
            /// $$
            /// f(n, p, q, m) = \left ( \sum_{i=0}^{W-1} 2^{c_i} \right ) - 2^W,
            /// $$
            /// where
            /// $$
            /// \\{c_0, c_1, c_2, \ldots, c_ {W-1}\\} =
            /// \\{b_0, b_1, b_2, \ldots, b_{p-1}, d_0, d_1, \ldots, d_{p-q-1}, b_q, \ldots,
            /// b_ {W-1}\\}.
            /// $$
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Panics
            /// Let `W` be the type's width Panics if `start < end`, or if `end >= W` and bits `W -
            /// start` through `end - start` of `bits` are not equal to the original sign bit of
            /// `self`.
            ///
            /// # Examples
            /// See [here](super::bit_block_access#assign_bits).
            #[inline]
            fn assign_bits(&mut self, start: u64, end: u64, bits: &Self::Bits) {
                assign_bits_signed(self, start, end, bits)
            }
        }
    };
}
apply_to_unsigned_signed_pairs!(impl_bit_block_access_signed);