1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::basic::signeds::PrimitiveSigned;
use crate::num::basic::unsigneds::PrimitiveUnsigned;
use crate::num::conversion::traits::{ExactFrom, WrappingFrom};
use crate::num::logic::traits::BitIterable;
use core::cmp::min;
use core::cmp::Ordering::*;
use core::marker::PhantomData;
use core::ops::Index;

/// A double-ended iterator over the bits of an unsigned primitive integer.
///
/// This `struct` is created by [`BitIterable::bits`]; see its documentation for more.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct PrimitiveUnsignedBitIterator<T: PrimitiveUnsigned> {
    pub(crate) value: T,
    pub(crate) remaining: usize,
    // If `n` is nonzero, this mask initially points to the least-significant bit, and is left-
    // shifted by next().
    pub(crate) i_mask: T,
    // If `n` is nonzero, this mask initially points to the most-significant nonzero bit, and is
    // right-shifted by next_back().
    pub(crate) j_mask: T,
}

impl<T: PrimitiveUnsigned> Iterator for PrimitiveUnsignedBitIterator<T> {
    type Item = bool;

    fn next(&mut self) -> Option<bool> {
        if self.remaining != 0 {
            let bit = self.value & self.i_mask != T::ZERO;
            self.i_mask <<= 1;
            self.remaining -= 1;
            Some(bit)
        } else {
            None
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.remaining, Some(self.remaining))
    }
}

impl<T: PrimitiveUnsigned> DoubleEndedIterator for PrimitiveUnsignedBitIterator<T> {
    fn next_back(&mut self) -> Option<bool> {
        if self.remaining != 0 {
            let bit = self.value & self.j_mask != T::ZERO;
            self.j_mask >>= 1;
            self.remaining -= 1;
            Some(bit)
        } else {
            None
        }
    }
}

impl<T: PrimitiveUnsigned> ExactSizeIterator for PrimitiveUnsignedBitIterator<T> {}

impl<T: PrimitiveUnsigned> Index<u64> for PrimitiveUnsignedBitIterator<T> {
    type Output = bool;

    /// A function to retrieve bits by index.
    ///
    /// The index is the power of 2 of which the bit is a coefficient. Indexing at or above the
    /// significant bit count returns false bits.
    ///
    /// This is equivalent to [`get_bit`](super::traits::BitAccess::get_bit).
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitIterable;
    ///
    /// assert_eq!(0u8.bits()[0], false);
    ///
    /// // 105 = 1101001b
    /// let bits = 105u32.bits();
    /// assert_eq!(bits[0], true);
    /// assert_eq!(bits[1], false);
    /// assert_eq!(bits[2], false);
    /// assert_eq!(bits[3], true);
    /// assert_eq!(bits[4], false);
    /// assert_eq!(bits[5], true);
    /// assert_eq!(bits[6], true);
    /// assert_eq!(bits[7], false);
    /// assert_eq!(bits[100], false);
    /// ```
    fn index(&self, index: u64) -> &bool {
        if self.value.get_bit(index) {
            &true
        } else {
            &false
        }
    }
}

fn bits_unsigned<T: PrimitiveUnsigned>(x: T) -> PrimitiveUnsignedBitIterator<T> {
    let significant_bits = x.significant_bits();
    PrimitiveUnsignedBitIterator {
        value: x,
        remaining: usize::exact_from(significant_bits),
        i_mask: T::ONE,
        j_mask: T::power_of_2(significant_bits.saturating_sub(1)),
    }
}

macro_rules! impl_bit_iterable_unsigned {
    ($t:ident) => {
        impl BitIterable for $t {
            type BitIterator = PrimitiveUnsignedBitIterator<$t>;

            /// Returns a double-ended iterator over the bits of an unsigned primitive integer.
            ///
            /// The forward order is ascending, so that less significant bits appear first. There
            /// are no trailing false bits going forward, or leading falses going backward.
            ///
            /// If it's necessary to get a [`Vec`] of all the bits, consider using
            /// [`to_bits_asc`](super::traits::BitConvertible::to_bits_asc) or
            /// [`to_bits_desc`](super::traits::BitConvertible::to_bits_desc) instead.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::bit_iterable#bits).
            #[inline]
            fn bits(self) -> PrimitiveUnsignedBitIterator<$t> {
                bits_unsigned(self)
            }
        }
    };
}
apply_to_unsigneds!(impl_bit_iterable_unsigned);

/// A double-ended iterator over the bits of a signed primitive integer.
///
/// This `struct` is created by [`BitIterable::bits`]; see its documentation for more.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct PrimitiveSignedBitIterator<U: PrimitiveUnsigned, S: PrimitiveSigned> {
    phantom: PhantomData<*const S>,
    xs: PrimitiveUnsignedBitIterator<U>,
}

impl<U: PrimitiveUnsigned, S: PrimitiveSigned> Iterator for PrimitiveSignedBitIterator<U, S> {
    type Item = bool;

    #[inline]
    fn next(&mut self) -> Option<bool> {
        self.xs.next()
    }

    #[inline]
    fn size_hint(&self) -> (usize, Option<usize>) {
        self.xs.size_hint()
    }
}

impl<U: PrimitiveUnsigned, S: PrimitiveSigned> DoubleEndedIterator
    for PrimitiveSignedBitIterator<U, S>
{
    #[inline]
    fn next_back(&mut self) -> Option<bool> {
        self.xs.next_back()
    }
}

impl<U: PrimitiveUnsigned, S: PrimitiveSigned> ExactSizeIterator
    for PrimitiveSignedBitIterator<U, S>
{
}

impl<U: PrimitiveUnsigned, S: PrimitiveSigned> Index<u64> for PrimitiveSignedBitIterator<U, S> {
    type Output = bool;

    /// A function to retrieve bits by index. The index is the power of 2 of which the bit is a
    /// coefficient.
    ///
    /// Indexing at or above the significant bit count returns false or true bits, depending on the
    /// value's sign.
    ///
    /// This is equivalent to [`get_bit`](super::traits::BitAccess::get_bit).
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::num::logic::traits::BitIterable;
    ///
    /// assert_eq!(0i8.bits()[0], false);
    ///
    /// // -105 = 10010111 in two's complement
    /// let bits = (-105i32).bits();
    /// assert_eq!(bits[0], true);
    /// assert_eq!(bits[1], true);
    /// assert_eq!(bits[2], true);
    /// assert_eq!(bits[3], false);
    /// assert_eq!(bits[4], true);
    /// assert_eq!(bits[5], false);
    /// assert_eq!(bits[6], false);
    /// assert_eq!(bits[7], true);
    /// assert_eq!(bits[100], true);
    /// ```
    fn index(&self, index: u64) -> &bool {
        if self.xs[min(index, U::WIDTH - 1)] {
            &true
        } else {
            &false
        }
    }
}

fn bits_signed<U: PrimitiveUnsigned + WrappingFrom<S>, S: PrimitiveSigned>(
    x: S,
) -> PrimitiveSignedBitIterator<U, S> {
    let unsigned = U::wrapping_from(x);
    let significant_bits = match x.sign() {
        Equal => 0,
        Greater => unsigned.significant_bits() + 1,
        Less => (!unsigned).significant_bits() + 1,
    };
    PrimitiveSignedBitIterator {
        phantom: PhantomData,
        xs: PrimitiveUnsignedBitIterator {
            value: unsigned,
            remaining: usize::exact_from(significant_bits),
            i_mask: U::ONE,
            j_mask: U::power_of_2(significant_bits.saturating_sub(1)),
        },
    }
}

macro_rules! impl_bit_iterable_signed {
    ($u:ident, $s:ident) => {
        impl BitIterable for $s {
            type BitIterator = PrimitiveSignedBitIterator<$u, $s>;

            /// Returns a double-ended iterator over the bits of a signed primitive integer.
            ///
            /// The forward order is ascending, so that less significant bits appear first. There
            /// are no trailing sign bits going forward, or leading sign bits going backward.
            ///
            /// If it's necessary to get a [`Vec`] of all the bits, consider using
            /// [`to_bits_asc`](super::traits::BitConvertible::to_bits_asc) or
            /// [`to_bits_desc`](super::traits::BitConvertible::to_bits_desc) instead.
            ///
            /// # Worst-case complexity
            /// Constant time and additional memory.
            ///
            /// # Examples
            /// See [here](super::bit_iterable#bits).
            #[inline]
            fn bits(self) -> PrimitiveSignedBitIterator<$u, $s> {
                bits_signed::<$u, $s>(self)
            }
        }
    };
}
apply_to_unsigned_signed_pairs!(impl_bit_iterable_signed);