1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::rational_sequences::{rational_sequence_reduce, RationalSequence};
use alloc::vec;
use alloc::vec::Vec;

impl<T: Eq> RationalSequence<T> {
    /// Converts a [`Vec`] to a finite [`RationalSequence`].
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::rational_sequences::RationalSequence;
    ///
    /// assert_eq!(RationalSequence::<u8>::from_vec(vec![]).to_string(), "[]");
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_vec(vec![1, 2]).to_string(),
    ///     "[1, 2]"
    /// );
    /// ```
    pub fn from_vec(non_repeating: Vec<T>) -> RationalSequence<T> {
        RationalSequence {
            non_repeating,
            repeating: vec![],
        }
    }

    /// Converts two [`Vec`]s to a finite [`RationalSequence`]. The first [`Vec`] is the
    /// nonrepeating part and the second is the repeating part.
    ///
    /// # Worst-case complexity
    /// $T(n, m) = O(n + m^{1+\varepsilon})$ for all $\varepsilon > 0$
    ///
    /// $M(n, m) = O(1)$
    ///
    /// where $T$ is time, $M$ is additional memory, $n$ is `non_repeating.len()`, and $m$ is
    /// `repeating.len()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::rational_sequences::RationalSequence;
    ///
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_vecs(vec![], vec![]).to_string(),
    ///     "[]"
    /// );
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_vecs(vec![], vec![1, 2]).to_string(),
    ///     "[[1, 2]]"
    /// );
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_vecs(vec![1, 2], vec![]).to_string(),
    ///     "[1, 2]"
    /// );
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_vecs(vec![1, 2], vec![3, 4]).to_string(),
    ///     "[1, 2, [3, 4]]"
    /// );
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_vecs(vec![1, 2, 3], vec![4, 3]).to_string(),
    ///     "[1, 2, [3, 4]]"
    /// );
    /// ```
    pub fn from_vecs(mut non_repeating: Vec<T>, mut repeating: Vec<T>) -> RationalSequence<T> {
        rational_sequence_reduce(&mut non_repeating, &mut repeating);
        RationalSequence {
            non_repeating,
            repeating,
        }
    }

    /// Converts a [`RationalSequence`] to a pair of [`Vec`]s containing the non-repeating and
    /// repeating parts, taking the [`RationalSequence`] by value.
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::rational_sequences::RationalSequence;
    ///
    /// assert_eq!(
    ///     RationalSequence::from_slices(&[1, 2], &[3, 4]).into_vecs(),
    ///     (vec![1, 2], vec![3, 4])
    /// );
    /// ```
    #[allow(clippy::missing_const_for_fn)] // can't be const because of destructors
    pub fn into_vecs(self) -> (Vec<T>, Vec<T>) {
        (self.non_repeating, self.repeating)
    }

    /// Returns references to the non-repeating and repeating parts of a [`RationalSequence`].
    ///
    /// # Worst-case complexity
    /// Constant time and additional memory.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::rational_sequences::RationalSequence;
    ///
    /// assert_eq!(
    ///     RationalSequence::from_slices(&[1u8, 2], &[3, 4]).slices_ref(),
    ///     (&[1u8, 2][..], &[3u8, 4][..])
    /// );
    /// ```
    pub fn slices_ref(&self) -> (&[T], &[T]) {
        (&self.non_repeating, &self.repeating)
    }
}

impl<T: Clone + Eq> RationalSequence<T> {
    /// Converts a slice to a finite [`RationalSequence`].
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::rational_sequences::RationalSequence;
    ///
    /// assert_eq!(RationalSequence::<u8>::from_slice(&[]).to_string(), "[]");
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_slice(&[1, 2]).to_string(),
    ///     "[1, 2]"
    /// );
    /// ```
    pub fn from_slice(non_repeating: &[T]) -> RationalSequence<T> {
        RationalSequence {
            non_repeating: non_repeating.to_vec(),
            repeating: vec![],
        }
    }

    /// Converts two slices to a finite [`RationalSequence`]. The first slice is the nonrepeating
    /// part and the second is the repeating part.
    ///
    /// # Worst-case complexity
    /// $T(n, m) = O(n + m^{1+\varepsilon})$ for all $\varepsilon > 0$
    ///
    /// $M(n, m) = O(n + m)$
    ///
    /// where $T$ is time, $M$ is additional memory, $n$ is `non_repeating.len()`, and $m$ is
    /// `repeating.len()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::rational_sequences::RationalSequence;
    ///
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_slices(&[], &[]).to_string(),
    ///     "[]"
    /// );
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_slices(&[], &[1, 2]).to_string(),
    ///     "[[1, 2]]"
    /// );
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_slices(&[1, 2], &[]).to_string(),
    ///     "[1, 2]"
    /// );
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_slices(&[1, 2], &[3, 4]).to_string(),
    ///     "[1, 2, [3, 4]]"
    /// );
    /// assert_eq!(
    ///     RationalSequence::<u8>::from_slices(&[1, 2, 3], &[4, 3]).to_string(),
    ///     "[1, 2, [3, 4]]"
    /// );
    /// ```
    pub fn from_slices(non_repeating: &[T], repeating: &[T]) -> RationalSequence<T> {
        let mut non_repeating = non_repeating.to_vec();
        let mut repeating = repeating.to_vec();
        rational_sequence_reduce(&mut non_repeating, &mut repeating);
        RationalSequence {
            non_repeating,
            repeating,
        }
    }

    /// Converts a [`RationalSequence`] to a pair of [`Vec`]s containing the non-repeating and
    /// repeating parts, taking the [`RationalSequence`] by reference.
    ///
    /// # Worst-case complexity
    /// $T(n) = O(n)$
    ///
    /// $M(n) = O(n)$
    ///
    /// where $T$ is time, $M$ is additional memory, and $n$ is `xs.component_len()`.
    ///
    /// # Examples
    /// ```
    /// use malachite_base::rational_sequences::RationalSequence;
    ///
    /// assert_eq!(
    ///     RationalSequence::from_slices(&[1, 2], &[3, 4]).to_vecs(),
    ///     (vec![1, 2], vec![3, 4])
    /// );
    /// ```
    pub fn to_vecs(&self) -> (Vec<T>, Vec<T>) {
        (self.non_repeating.clone(), self.repeating.clone())
    }
}