1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
// Copyright © 2024 Mikhail Hogrefe
//
// Uses code adopted from the GNU MP Library.
//
//      Copyright © 1991, 1993-1997, 1999-2016, 2009, 2020 Free Software Foundation, Inc.
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.

use crate::num::arithmetic::traits::DivisibleBy;
use crate::num::basic::traits::Zero;
#[cfg(feature = "random")]
use crate::num::conversion::traits::ExactFrom;
#[cfg(feature = "random")]
use crate::num::random::{random_unsigneds_less_than, RandomUnsignedsLessThan};
#[cfg(feature = "random")]
use crate::random::Seed;
use alloc::vec::Vec;
#[cfg(feature = "random")]
use rand::prelude::SliceRandom;
#[cfg(feature = "random")]
use rand_chacha::ChaCha20Rng;

/// Sets all values in a slice to 0.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
///
/// # Examples
/// ```
/// use malachite_base::slices::slice_set_zero;
///
/// let mut xs = [1, 2, 3, 4, 5];
/// slice_set_zero::<u32>(&mut xs[1..4]);
/// assert_eq!(xs, [1, 0, 0, 0, 5]);
/// ```
///
/// This is equivalent to `mpn_zero` from `mpn/generic/zero.c`, GMP 6.2.1. Note that this is needed
/// less often in Malachite than in GMP, since Malachite generally initializes new memory with
/// zeros.
pub fn slice_set_zero<T: Zero>(xs: &mut [T]) {
    for x in &mut *xs {
        *x = T::ZERO;
    }
}

/// Tests whether all values in a slice are equal to 0.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
///
/// # Examples
/// ```
/// use malachite_base::slices::slice_test_zero;
///
/// assert!(slice_test_zero::<u32>(&[0, 0, 0]));
/// assert!(!slice_test_zero::<u32>(&[0, 1, 0]));
/// ```
///
/// This is equivalent to `mpn_zero_p` from `gmp-h.in`, GMP 6.2.1.
pub fn slice_test_zero<T: Eq + Zero>(xs: &[T]) -> bool {
    let zero = T::ZERO;
    xs.iter().all(|x| x == &zero)
}

/// Counts the number of zeros that a slice starts with.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
///
/// # Examples
/// ```
/// use malachite_base::slices::slice_leading_zeros;
///
/// assert_eq!(slice_leading_zeros::<u32>(&[1, 2, 3]), 0);
/// assert_eq!(slice_leading_zeros::<u32>(&[0, 0, 0, 1, 2, 3]), 3);
/// ```
pub fn slice_leading_zeros<T: Eq + Zero>(xs: &[T]) -> usize {
    let zero = T::ZERO;
    xs.iter().take_while(|&x| x == &zero).count()
}

/// Counts the number of zeros that a slice ends with.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
///
/// # Examples
/// ```
/// use malachite_base::slices::slice_trailing_zeros;
///
/// assert_eq!(slice_trailing_zeros::<u32>(&[1, 2, 3]), 0);
/// assert_eq!(slice_trailing_zeros::<u32>(&[1, 2, 3, 0, 0, 0]), 3);
/// ```
pub fn slice_trailing_zeros<T: Eq + Zero>(xs: &[T]) -> usize {
    let zero = T::ZERO;
    xs.iter().rev().take_while(|&x| x == &zero).count()
}

/// Given a slice and an starting index, copies the subslice starting from that index to the
/// beginning of the slice.
///
/// In other words, this function copies the contents of `&xs[starting_index..]` to `&xs[..xs.len()
/// - starting_index]`.
///
/// In other other words, if $k$ is `starting_index`, the sequence $[x_0, x_1, \ldots, x_{n-1}]$
/// becomes $[x_k, x_{k+1}, \ldots, x_{n-1}, x_{n-k}, x_{n-k+1}, \ldots, x_{n-1}]$.
///
/// If `starting_index` is zero or `xs.len()`, nothing happens.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
///
/// # Panics
/// Panics if `starting_index` is greater than the length of `xs`.
///
/// # Examples
/// ```
/// use malachite_base::slices::slice_move_left;
///
/// let xs = &mut [1, 2, 3, 4, 5, 6];
/// slice_move_left::<u32>(xs, 2);
/// assert_eq!(xs, &[3, 4, 5, 6, 5, 6]);
/// ```
#[inline]
pub fn slice_move_left<T: Copy>(xs: &mut [T], starting_index: usize) {
    xs.copy_within(starting_index..xs.len(), 0);
}

/// Splits an immutable slice into adjacent immutable chunks.
///
/// An input slice $\mathbf{x}$, a chunk length $n$, and $k + 1$ output slice names $\\mathbf{x}_0,
/// \\mathbf{x}_1, \\ldots, \\mathbf{x}_k$ are given. The last output slice name, $\mathbf{x}_k$, is
/// specified via a separate argument called `xs_last`.
///
/// The first $k$ output slice names are assigned adjacent length-$n$ chunks from $\mathbf{x}$. If
/// $|\mathbf{x}| < kn$, the generated code panics.
///
/// The last slice, $\mathbf{x}_k$, which is assigned to `xs_last`, has length $|\mathbf{x}| - kn$.
/// This length may be greater than $n$.
///
/// # Worst-case complexity
/// $T(k) = O(k)$
///
/// $M(k) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $k$ is the number of output slice names `xs_i`.
///
/// # Examples
/// ```
/// use malachite_base::split_into_chunks;
///
/// let xs = &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
/// split_into_chunks!(xs, 3, [xs_1, xs_2, xs_3], xs_4);
/// assert_eq!(xs_1, &[0, 1, 2]);
/// assert_eq!(xs_2, &[3, 4, 5]);
/// assert_eq!(xs_3, &[6, 7, 8]);
/// assert_eq!(xs_4, &[9, 10, 11, 12]);
/// ```
#[macro_export]
macro_rules! split_into_chunks {
    ($xs: expr, $n: expr, [$($xs_i: ident),*], $xs_last: ident) => {
        let remainder = &$xs[..];
        let n = $n;
        $(
            let ($xs_i, remainder) = remainder.split_at(n);
        )*
        let $xs_last = remainder;
    }
}

/// Splits a mutable slice into adjacent mutable chunks.
///
/// An input slice $\mathbf{x}$, a chunk length $n$, and $k + 1$ output slice names $\\mathbf{x}_0,
/// \\mathbf{x}_1, \\ldots, \\mathbf{x}_k$ are given. The last output slice name, $\mathbf{x}_k$, is
/// specified via a separate argument called `xs_last`.
///
/// The first $k$ output slice names are assigned adjacent length-$n$ chunks from $\mathbf{x}$. If
/// $|\mathbf{x}| < kn$, the generated code panics.
///
/// The last slice, $\mathbf{x}_k$, which is assigned to `xs_last`, has length $|\mathbf{x}| - kn$.
/// This length may be greater than $n$.
///
/// # Worst-case complexity
/// $T(k) = O(k)$
///
/// $M(k) = O(1)$
///
/// where $T$ is time, $M$ is additional memory, and $k$ is the number of output slice names `xs_i`.
///
/// # Examples
/// ```
/// use malachite_base::slices::slice_set_zero;
/// use malachite_base::split_into_chunks_mut;
///
/// let xs = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
/// split_into_chunks_mut!(xs, 3, [xs_1, xs_2, xs_3], xs_4);
/// assert_eq!(xs_1, &[0, 1, 2]);
/// assert_eq!(xs_2, &[3, 4, 5]);
/// assert_eq!(xs_3, &[6, 7, 8]);
/// assert_eq!(xs_4, &[9, 10, 11, 12]);
///
/// slice_set_zero(xs_2);
/// assert_eq!(xs, &[0, 1, 2, 0, 0, 0, 6, 7, 8, 9, 10, 11, 12]);
/// ```
#[macro_export]
macro_rules! split_into_chunks_mut {
    ($xs: expr, $n: expr, [$($xs_i: ident),*], $xs_last: ident) => {
        let remainder = &mut $xs[..];
        let n = $n;
        $(
            let ($xs_i, remainder) = remainder.split_at_mut(n);
        )*
        let $xs_last = remainder;
    }
}

#[cfg(feature = "random")]
/// Uniformly generates a random reference to a value from a nonempty slice.
///
/// This `struct` is created by [`random_values_from_slice`]; see its documentation for more.
#[derive(Clone, Debug)]
pub struct RandomValuesFromSlice<'a, T> {
    xs: &'a [T],
    indices: RandomUnsignedsLessThan<u64>,
}

#[cfg(feature = "random")]
impl<'a, T> Iterator for RandomValuesFromSlice<'a, T> {
    type Item = &'a T;

    #[inline]
    fn next(&mut self) -> Option<&'a T> {
        Some(&self.xs[usize::exact_from(self.indices.next().unwrap())])
    }
}

#[cfg(feature = "random")]
/// Uniformly generates a random reference to a value from a nonempty slice.
///
/// The iterator cannot outlive the slice. It may be more convenient for the iterator to own the
/// data, in which case you may use [`random_values_from_vec`](crate::vecs::random_values_from_vec)
/// instead.
///
/// The output length is infinite.
///
/// $P(x) = 1/n$, where $n$ is `xs.len()`.
///
/// # Expected complexity per iteration
/// Constant time and additional memory.
///
/// # Panics
/// Panics if `xs` is empty.
///
/// # Examples
/// ```
/// use itertools::Itertools;
/// use malachite_base::random::EXAMPLE_SEED;
/// use malachite_base::slices::random_values_from_slice;
///
/// let xs = &[2, 3, 5, 7, 11];
/// assert_eq!(
///     random_values_from_slice(EXAMPLE_SEED, xs)
///         .cloned()
///         .take(10)
///         .collect_vec(),
///     &[3, 7, 3, 5, 11, 3, 5, 11, 2, 2]
/// );
/// ```
#[inline]
pub fn random_values_from_slice<T>(seed: Seed, xs: &[T]) -> RandomValuesFromSlice<T> {
    assert!(!xs.is_empty(), "empty slice");
    RandomValuesFromSlice {
        xs,
        indices: random_unsigneds_less_than(seed, u64::exact_from(xs.len())),
    }
}

pub(crate) fn advance_indices(indices: &mut [usize]) -> bool {
    let n = indices.len();
    if n == 0 {
        return true;
    }
    // Find the index of the value right before the longest descending suffix.
    let mut pivot_index = n;
    let mut i = 0;
    let mut reached_end = true;
    while pivot_index > 0 {
        pivot_index -= 1;
        let next_i = indices[pivot_index];
        if next_i < i {
            reached_end = false;
            break;
        }
        i = next_i;
    }
    if reached_end {
        return true;
    }
    let pivot = indices[pivot_index];
    let mut swap_index = n - 1;
    while indices[swap_index] < pivot {
        swap_index -= 1;
    }
    indices.swap(pivot_index, swap_index);
    indices[pivot_index + 1..].reverse();
    false
}

/// Generates every permutation of a slice.
///
/// This `struct` is created by [`exhaustive_slice_permutations`]; see its documentation for more.
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub struct ExhaustiveSlicePermutations<'a, T> {
    xs: &'a [T],
    indices: Vec<usize>,
    done: bool,
}

impl<'a, T> Iterator for ExhaustiveSlicePermutations<'a, T> {
    type Item = Vec<&'a T>;

    fn next(&mut self) -> Option<Vec<&'a T>> {
        if self.done {
            None
        } else {
            let out = Some(self.indices.iter().map(|&i| &self.xs[i]).collect());
            self.done = advance_indices(&mut self.indices);
            out
        }
    }
}

/// Generates every permutation of a slice.
///
/// The permutations are [`Vec`]s of references into the slice. It may be more convenient for the
/// iterator to own the data, in which case you may use
/// [`exhaustive_vec_permutations`](crate::vecs::exhaustive_vec_permutations) instead.
///
/// The permutations are generated in lexicographic order with respect to the ordering in the slice.
///
/// The output length is $n!$, where $n$ is `xs.len()`.
///
/// # Expected complexity per iteration
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
///
/// # Examples
/// ```
/// use itertools::Itertools;
/// use malachite_base::slices::exhaustive_slice_permutations;
///
/// let css: Vec<String> = exhaustive_slice_permutations(&['a', 'b', 'c', 'd'])
///     .map(|ds| ds.into_iter().copied().collect())
///     .collect();
/// assert_eq!(
///     css.iter().map(String::as_str).collect_vec().as_slice(),
///     [
///         "abcd", "abdc", "acbd", "acdb", "adbc", "adcb", "bacd", "badc", "bcad", "bcda", "bdac",
///         "bdca", "cabd", "cadb", "cbad", "cbda", "cdab", "cdba", "dabc", "dacb", "dbac", "dbca",
///         "dcab", "dcba"
///     ]
/// );
/// ```
pub fn exhaustive_slice_permutations<T>(xs: &[T]) -> ExhaustiveSlicePermutations<T> {
    ExhaustiveSlicePermutations {
        xs,
        indices: (0..xs.len()).collect(),
        done: false,
    }
}

#[cfg(feature = "random")]
/// Uniformly generates a random permutation of references to a slice.
///
/// This `struct` is created by [`random_slice_permutations`]; see its documentation for more.
#[derive(Clone, Debug)]
pub struct RandomSlicePermutations<'a, T> {
    xs: &'a [T],
    indices: Vec<usize>,
    rng: ChaCha20Rng,
}

#[cfg(feature = "random")]
impl<'a, T> Iterator for RandomSlicePermutations<'a, T> {
    type Item = Vec<&'a T>;

    fn next(&mut self) -> Option<Vec<&'a T>> {
        self.indices.shuffle(&mut self.rng);
        Some(self.indices.iter().map(|&i| &self.xs[i]).collect())
    }
}

#[cfg(feature = "random")]
/// Uniformly generates a random permutation of references to a slice.
///
/// The iterator cannot outlive the slice. It may be more convenient for the iterator to own the
/// data, in which case you may use
/// [`random_vec_permutations`](crate::vecs::random_vec_permutations) instead.
///
/// The output length is infinite.
///
/// $P(p) = 1/n!$, where $n$ is `xs.len()`.
///
/// # Expected complexity per iteration
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
///
/// # Examples
/// ```
/// use itertools::Itertools;
/// use malachite_base::random::EXAMPLE_SEED;
/// use malachite_base::slices::random_slice_permutations;
///
/// let css: Vec<String> = random_slice_permutations(EXAMPLE_SEED, &['a', 'b', 'c', 'd'])
///     .take(20)
///     .map(|ds| ds.into_iter().copied().collect())
///     .collect();
/// assert_eq!(
///     css.iter().map(String::as_str).collect_vec().as_slice(),
///     [
///         "cadb", "cbad", "cadb", "badc", "acdb", "cbad", "dabc", "dbca", "cdba", "cdab", "bacd",
///         "cabd", "adbc", "cdab", "dcab", "abcd", "abcd", "dacb", "bcad", "adcb"
///     ]
/// );
/// ```
pub fn random_slice_permutations<T>(seed: Seed, xs: &[T]) -> RandomSlicePermutations<T> {
    RandomSlicePermutations {
        xs,
        indices: (0..xs.len()).collect(),
        rng: seed.get_rng(),
    }
}

/// Given a slice with nonzero length $\ell$, returns the smallest $n$ such that the slice consists
/// of $n/\ell$ copies of a length-$\ell$ subslice.
///
/// Typically $\ell = n$.
///
/// # Worst-case complexity
/// $T(n) = O(n^{1+\varepsilon})$ for all $\varepsilon > 0$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `xs.len()`.
///
/// # Panics
/// Panics if `xs` is empty.
///
/// # Examples
/// ```
/// use malachite_base::slices::min_repeating_len;
///
/// assert_eq!(min_repeating_len(&[1, 2, 1, 2, 1, 2]), 2);
/// assert_eq!(min_repeating_len(&[1, 2, 1, 2, 1, 3]), 6);
/// assert_eq!(min_repeating_len(&[5, 5, 5]), 1);
/// ```
pub fn min_repeating_len<T: Eq>(xs: &[T]) -> usize {
    let len = xs.len();
    assert_ne!(len, 0);
    for start_i in 1..=len >> 1 {
        if !len.divisible_by(start_i) {
            continue;
        }
        let (xs_lo, xs_hi) = xs.split_at(start_i);
        if Iterator::eq(xs_lo.iter().cycle().take(len - start_i), xs_hi.iter()) {
            return start_i;
        }
    }
    len
}