1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
// Copyright © 2024 Mikhail Hogrefe
//
// This file is part of Malachite.
//
// Malachite is free software: you can redistribute it and/or modify it under the terms of the GNU
// Lesser General Public License (LGPL) as published by the Free Software Foundation; either version
// 3 of the License, or (at your option) any later version. See <https://www.gnu.org/licenses/>.
use crate::named::Named;
use alloc::string::String;
use alloc::vec::Vec;
use core::fmt::{Binary, Debug, LowerHex, Octal, UpperHex};
use hashbrown::HashSet;
use itertools::Itertools;
/// Sorts the characters of a string slice and returns them in a new [`String`].
///
/// # Worst-case complexity
/// $T(n) = O(n \log n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `s.len()`.
///
/// # Examples
/// ```
/// use malachite_base::strings::string_sort;
///
/// assert_eq!(string_sort("Hello, world!"), " !,Hdellloorw");
/// assert_eq!(string_sort("Mississippi"), "Miiiippssss");
/// ```
pub fn string_sort(s: &str) -> String {
let mut chars = s.chars().collect_vec();
chars.sort_unstable();
chars.iter().collect()
}
/// Takes a string slice's unique characters and returns them in a new [`String`].
///
/// The unique characters are output in order of appearance.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n)$
///
/// where $T$ is time, $M$ is additional memory, and $n$ is `s.len()`.
///
/// # Examples
/// ```
/// use malachite_base::strings::string_unique;
///
/// assert_eq!(string_unique("Hello, world!"), "Helo, wrd!");
/// assert_eq!(string_unique("Mississippi"), "Misp");
/// ```
pub fn string_unique(s: &str) -> String {
let mut chars = HashSet::new();
let mut nub = String::new();
for c in s.chars() {
if chars.insert(c) {
nub.push(c);
}
}
nub
}
/// Returns whether all of the first string slice's characters are present in the second string
/// slice.
///
/// Does not take multiplicities into account.
///
/// # Worst-case complexity
/// $T(n) = O(n)$
///
/// $M(n) = O(n + m)$
///
/// where $T$ is time, $M$ is additional memory, $n$ is `s.len()`, and $m$ is `t.len()`.
///
/// # Examples
/// ```
/// use malachite_base::strings::string_is_subset;
///
/// assert_eq!(string_is_subset("oH, well", "Hello, world!"), true);
/// assert_eq!(string_is_subset("MMM", "Mississippi"), true);
/// assert_eq!(string_is_subset("Hello, World!", "Hello, world!"), false);
/// assert_eq!(string_is_subset("j", "Mississippi"), false);
/// ```
pub fn string_is_subset(s: &str, t: &str) -> bool {
let t_chars: HashSet<char> = t.chars().collect();
s.chars().all(|c| t_chars.contains(&c))
}
impl_named!(String);
/// A trait that provides an ergonomic way to create the string specified by a [`Debug`]
/// implementation.
pub trait ToDebugString: Debug {
fn to_debug_string(&self) -> String;
}
impl<T: Debug> ToDebugString for T {
/// Returns the [`String`] produced by `T`s [`Debug`] implementation.
///
/// # Examples
/// ```
/// use malachite_base::strings::ToDebugString;
///
/// assert_eq!([1, 2, 3].to_debug_string(), "[1, 2, 3]");
/// assert_eq!(
/// [vec![2, 3], vec![], vec![4]].to_debug_string(),
/// "[[2, 3], [], [4]]"
/// );
/// assert_eq!(Some(5).to_debug_string(), "Some(5)");
/// ```
#[inline]
fn to_debug_string(&self) -> String {
::alloc::format!("{self:?}")
}
}
/// A trait that provides an ergonomic way to create the string specified by a [`Binary`]
/// implementation.
pub trait ToBinaryString: Binary {
fn to_binary_string(&self) -> String;
}
impl<T: Binary> ToBinaryString for T {
/// Returns the [`String`] produced by `T`s [`Binary`] implementation.
///
/// # Examples
/// ```
/// use malachite_base::strings::ToBinaryString;
///
/// assert_eq!(5u64.to_binary_string(), "101");
/// assert_eq!((-100i16).to_binary_string(), "1111111110011100");
/// ```
#[inline]
fn to_binary_string(&self) -> String {
::alloc::format!("{self:b}")
}
}
/// A trait that provides an ergonomic way to create the string specified by an [`Octal`]
/// implementation.
pub trait ToOctalString: Octal {
fn to_octal_string(&self) -> String;
}
impl<T: Octal> ToOctalString for T {
/// Returns the [`String`] produced by `T`s [`Octal`] implementation.
///
/// # Examples
/// ```
/// use malachite_base::strings::ToOctalString;
///
/// assert_eq!(50u64.to_octal_string(), "62");
/// assert_eq!((-100i16).to_octal_string(), "177634");
/// ```
#[inline]
fn to_octal_string(&self) -> String {
::alloc::format!("{self:o}")
}
}
/// A trait that provides an ergonomic way to create the string specified by a [`LowerHex`]
/// implementation.
pub trait ToLowerHexString: LowerHex {
fn to_lower_hex_string(&self) -> String;
}
impl<T: LowerHex> ToLowerHexString for T {
/// Returns the [`String`] produced by `T`s [`LowerHex`] implementation.
///
/// # Examples
/// ```
/// use malachite_base::strings::ToLowerHexString;
///
/// assert_eq!(50u64.to_lower_hex_string(), "32");
/// assert_eq!((-100i16).to_lower_hex_string(), "ff9c");
/// ```
#[inline]
fn to_lower_hex_string(&self) -> String {
::alloc::format!("{self:x}")
}
}
/// A trait that provides an ergonomic way to create the string specified by an [`UpperHex`]
/// implementation.
pub trait ToUpperHexString: UpperHex {
fn to_upper_hex_string(&self) -> String;
}
impl<T: UpperHex> ToUpperHexString for T {
/// Returns the [`String`] produced by `T`s [`UpperHex`] implementation.
///
/// # Examples
/// ```
/// use malachite_base::strings::ToUpperHexString;
///
/// assert_eq!(50u64.to_upper_hex_string(), "32");
/// assert_eq!((-100i16).to_upper_hex_string(), "FF9C");
/// ```
#[inline]
fn to_upper_hex_string(&self) -> String {
::alloc::format!("{self:X}")
}
}
/// Generates [`String`]s, given an iterator that generates `Vec<char>`s.
///
/// This `struct` is created by [`strings_from_char_vecs`]; see its documentation for more.
#[derive(Clone, Debug)]
pub struct StringsFromCharVecs<I: Iterator<Item = Vec<char>>> {
css: I,
}
impl<I: Iterator<Item = Vec<char>>> Iterator for StringsFromCharVecs<I> {
type Item = String;
#[inline]
fn next(&mut self) -> Option<String> {
self.css.next().map(|cs| cs.into_iter().collect())
}
}
/// Generates [`String`]s, given an iterator that generates `Vec<char>`s.
///
/// The elements appear in the same order as they do in the given iterator, but as [`String`]s.
///
/// The output length is `css.count()`.
///
/// # Examples
/// ```
/// use itertools::Itertools;
/// use malachite_base::strings::strings_from_char_vecs;
///
/// let ss =
/// &strings_from_char_vecs([vec!['a', 'b'], vec!['c', 'd']].iter().cloned()).collect_vec();
/// assert_eq!(
/// ss.iter().map(|cs| cs.as_str()).collect_vec().as_slice(),
/// &["ab", "cd"]
/// );
/// ```
#[inline]
pub const fn strings_from_char_vecs<I: Iterator<Item = Vec<char>>>(
css: I,
) -> StringsFromCharVecs<I> {
StringsFromCharVecs { css }
}
/// Iterators that generate [`String`]s without repetition.
pub mod exhaustive;
#[cfg(feature = "random")]
/// Iterators that generate [`String`]s randomly.
pub mod random;