manifold3d_types/math/
vec2.rsuse manifold3d_sys::ManifoldVec2;
use std::ops::{Add, Sub};
#[derive(Debug, Clone, Copy, PartialEq)]
pub struct Vec2 {
pub x: f64,
pub y: f64,
}
impl Vec2 {
pub fn new(x: f64, y: f64) -> Self {
Self { x, y }
}
}
impl From<ManifoldVec2> for Vec2 {
fn from(value: ManifoldVec2) -> Self {
Vec2 {
x: value.x,
y: value.y,
}
}
}
impl Add for Vec2 {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Vec2::new(self.x + rhs.x, self.y + rhs.y)
}
}
impl<T> Add<T> for Vec2
where
f64: From<T>,
T: num_traits::ToPrimitive,
{
type Output = Self;
fn add(self, rhs: T) -> Self::Output {
let value = f64::from(rhs);
Vec2::new(self.x + value, self.y + value)
}
}
impl Sub for Vec2 {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Vec2::new(self.x - rhs.x, self.y - rhs.y)
}
}
impl<T> Sub<T> for Vec2
where
f64: From<T>,
T: num_traits::ToPrimitive,
{
type Output = Self;
fn sub(self, rhs: T) -> Self::Output {
let value = f64::from(rhs);
Vec2::new(self.x - value, self.y - value)
}
}
#[cfg(feature = "nalgebra_interop")]
impl From<nalgebra::Vector2<f64>> for Vec2 {
fn from(value: nalgebra::Vector2<f64>) -> Self {
Vec2 {
x: value.x,
y: value.y,
}
}
}