merkle_log/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
//! An implementation of the "Merkle Tree-Structured Log" defined in the blog
//! post [Transparent Logs for Skeptical Clients].
//!
//! [Transparent Logs for Skeptical Clients]: https://research.swtch.com/tlog

#![cfg_attr(not(feature = "std"), no_std)]
extern crate alloc;

mod error;
mod treeid;
mod util;

pub use error::Error;
pub use treeid::TreeID;
pub use util::{Digest, MemoryStore, Store};

use crate::{maybestd::*, util::Either};

#[cfg(not(feature = "std"))]
pub(crate) mod maybestd {
    extern crate alloc;

    pub use alloc::{
        collections::{BTreeMap, BTreeSet},
        vec::Vec,
    };
    pub use core::{iter, marker::PhantomData};
    pub use core2::io::{self, BufRead, Read, Write};
}

#[cfg(feature = "std")]
pub(crate) mod maybestd {
    pub use core2::io::{self, BufRead, Read, Write};
    pub use std::{
        collections::{BTreeMap, BTreeSet},
        iter,
        marker::PhantomData,
        vec::Vec,
    };
}

/// Type alias for nodes in the merkle tree.
pub trait Node: AsRef<[u8]> + Copy + Eq {}
impl<N> Node for N where N: AsRef<[u8]> + Copy + Eq {}

/// Type alias for a [`BTreeMap`] containing leaf and tree nodes.
///
/// [`BTreeMap`]: crate::maybestd::BTreeMap
pub type Proof<N> = BTreeMap<TreeID, N>;

/// A [Merkle Tree-Structured Log] is a potentially unbalanced merkle tree
/// containing the entries of an append-only log (maximum `2^63 + 1` entries).
///
/// It extends the functionality of a traditional merkle tree by allowing for:
/// - continually appending new entries (even when the length of the log is not
/// a power of two)
/// - providing proofs that a previous log head is a prefix of (contained
/// within) the current log.
///
/// ## Example
/// ```rust
/// use merkle_log::{MemoryStore, MerkleLog, Store};
/// use digest::Output;
/// use sha2::Sha256;
///
/// let mut store = MemoryStore::default();
///
/// // first entry
/// let entry = b"hello";
/// let mut log = MerkleLog::<Sha256, [u8; 32]>::new(&entry);
/// let initial_head = *log.head();
/// let initial_log = log.clone();
/// store.set_leaf(log.head_id(), initial_head).unwrap();
///
/// // second entry
/// let entry = b"world";
/// log.append(entry, &mut store).unwrap();
///
/// // prove existence of initial entry by its digest
/// let proof = log.prove(0, &store).unwrap();
/// assert!(log.verify(0, &initial_head, &proof).unwrap());
/// ```
///
/// [Merkle Tree-Structured Log]: https://research.swtch.com/tlog#merkle_tree-structured_log
#[derive(Clone, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
#[cfg_attr(
    feature = "borsh",
    derive(borsh::BorshDeserialize, borsh::BorshSerialize)
)]
pub struct MerkleLog<D: Digest<N>, N: Node> {
    /// The digest of the log's head.
    head: N,
    /// The merkle root of the tree in which this entry is the head.
    root: N,
    /// The index of the log's head.
    index: u64,
    /// The underlying digest used by this log.
    #[cfg_attr(feature = "serde", serde(skip))]
    #[cfg_attr(feature = "borsh", borsh(skip))]
    _digest: PhantomData<D>,
}

impl<D, N> MerkleLog<D, N>
where
    D: Digest<N>,
    N: Node,
{
    /// Creates a new [`MerkleLog`] from the first log entry.
    ///
    /// [`MerkleLog`]: crate::MerkleLog
    #[inline]
    pub fn new(entry: impl AsRef<[u8]>) -> Self {
        let head = D::leaf_digest(entry.as_ref());
        Self {
            index: 0,
            head,
            root: head,
            _digest: PhantomData,
        }
    }

    /// The size of the log.
    #[inline(always)]
    pub const fn len(&self) -> u64 {
        self.index + 1
    }

    /// The [`Node`] of the current head.
    ///
    /// [`Node`]: crate::Node
    #[inline(always)]
    pub const fn head(&self) -> &N {
        &self.head
    }

    /// The unique [`TreeID`] of the current head.
    ///
    /// [`TreeID`]: crate::TreeID
    #[inline(always)]
    pub const fn head_id(&self) -> TreeID {
        TreeID::leaf(self.index)
    }

    /// The merkle root [`Node`] of the log.
    ///
    /// [`Node`]: crate::Node
    #[inline(always)]
    pub const fn root(&self) -> &N {
        &self.root
    }

    /// The unique [`TreeID`] of the current root.
    ///
    /// [`TreeID`]: crate::TreeID
    #[inline(always)]
    pub const fn root_id(&self) -> TreeID {
        TreeID::first(self.root_height())
    }

    /// The unique [`TreeID`] of the current tree root.
    ///
    /// [`TreeID`]: crate::TreeID
    #[inline(always)]
    pub const fn root_height(&self) -> u8 {
        TreeID::root_height(self.len())
    }

    /// Produces the [`TreeID`]s whose values are required to produce a valid
    /// proof of inclusion for a particular leaf entry in the log, starting from
    /// the head.
    ///
    /// ## Examples
    /// ```rust
    /// use merkle_log::{MemoryStore, MerkleLog, Store, TreeID};
    /// use digest::Output;
    /// use sha2::Sha256;
    ///
    /// let mut store = MemoryStore::default();
    ///
    /// let entry = b"hello";
    /// let mut log = MerkleLog::<Sha256, [u8; 32]>::new(&entry);
    /// store.set_leaf(log.head_id(), *log.head()).unwrap();
    ///
    /// log.append(&entry, &mut store).unwrap(); // new size 2
    /// log.append(&entry, &mut store).unwrap(); // new size 3
    /// assert_eq!(log.proving_ids(1).collect::<Vec<_>>(), &[TreeID::from(0), TreeID::from(4)]);
    ///
    /// log.append(&entry, &mut store).unwrap(); // new size 4
    /// assert_eq!(log.proving_ids(1).collect::<Vec<_>>(), &[TreeID::from(0), TreeID::from(5)]);
    /// assert_eq!(log.proving_ids(2).collect::<Vec<_>>(), &[TreeID::from(6), TreeID::from(1)]);
    /// ```
    ///
    /// [`TreeID`]: crate::TreeID
    pub fn proving_ids(&self, entry_index: u64) -> impl Iterator<Item = TreeID> {
        let len = self.len();
        let entry_id = TreeID::leaf(entry_index);

        // if balanced, use traditional merkle tree proof creation
        if len.is_power_of_two() {
            return Either::Left(entry_id.proving_ids(self.root_height()));
        }

        Either::Right(TreeID::subroot_ids(len).flat_map(move |subroot_id| {
            if subroot_id.spans(&entry_id) {
                Either::Left(entry_id.proving_ids(subroot_id.height()))
            } else {
                Either::Right(iter::once(subroot_id))
            }
        }))
    }

    /// Creates a proof that an entry is contained within the current log.
    pub fn prove<S: Store<N>>(&self, entry_index: u64, store: &S) -> Result<Proof<N>, Error> {
        store.get_many(self.proving_ids(entry_index))
    }

    /// Verifies a proof asserting that the `entry_node` exists at `entry_index`
    /// within the current log.
    pub fn verify(
        &self,
        entry_index: u64,
        entry_node: &N,
        proof: &Proof<N>,
    ) -> Result<bool, Error> {
        let len = self.len();
        let entry_id = TreeID::leaf(entry_index);

        if entry_index > self.index {
            // check if out-of-bounds
            return Err(Error::OutOfBounds);
        } else if len == 1 {
            // verifying a length-1 log
            // index should be 0 and entry_node should be the log's root
            return Ok(entry_index == self.index
                && entry_node == &self.head
                && entry_node == &self.root);
        }

        // if balanced, use traditional merkle tree verification
        if len.is_power_of_two() {
            let root = Self::root_hash(entry_id, entry_node, self.root_height(), proof)?;
            return Ok(root == self.root);
        }

        // otherwise
        // compute subroots, join them from right to left
        let head_id = self.head_id();
        let mut subroots = TreeID::subroot_ids(len)
            .filter_map(|subroot_id| match subroot_id {
                _ if &head_id == &subroot_id => Some((head_id, self.head)),
                _ if subroot_id.spans(&entry_id) => {
                    Self::root_hash(entry_id, entry_node, subroot_id.height(), proof)
                        .ok()
                        .map(|subroot| (subroot_id, subroot))
                }
                _ => proof
                    .get(&subroot_id)
                    .copied()
                    .map(|subroot| (subroot_id, subroot)),
            })
            .collect::<Vec<(TreeID, N)>>()
            .into_iter()
            .rev();

        let first_subroot = subroots.next();
        let (_, root) = subroots
            .fold(first_subroot, |root, (subroot_id, subroot)| {
                root.map(|(root_id, root)| D::node_digest((subroot_id, &subroot), (root_id, &root)))
                    .map(|root| (subroot_id.parent(), root))
            })
            .ok_or_else(|| Error::ProofError("failed to compute root digest"))?;

        Ok(root == self.root)
    }

    /// Produces the [`TreeID`]s whose values are required to append the next
    /// entry to log.
    /// See [`TreeID::appending_ids`] for additional doctests.
    ///
    /// ## Examples
    /// ```rust
    /// use merkle_log::{MemoryStore, MerkleLog, Store, TreeID};
    /// use digest::Output;
    /// use sha2::Sha256;
    ///
    /// let mut store = MemoryStore::default();
    ///
    /// let entry = b"hello";
    /// let mut log = MerkleLog::<Sha256, [u8; 32]>::new(&entry);
    /// store.set_leaf(log.head_id(), *log.head()).unwrap();
    /// assert_eq!(log.appending_ids().collect::<Vec<_>>(), &[TreeID::from(0)]);
    ///
    /// log.append(&entry, &mut store).unwrap(); // new size 2
    /// assert_eq!(log.appending_ids().collect::<Vec<_>>(), &[TreeID::from(1)]);
    ///
    /// log.append(&entry, &mut store).unwrap(); // new size 3
    /// assert_eq!(log.appending_ids().collect::<Vec<_>>(), &[TreeID::from(1), TreeID::from(4)]);
    ///
    /// log.append(&entry, &mut store).unwrap(); // new size 4
    /// assert_eq!(log.appending_ids().collect::<Vec<_>>(), &[TreeID::from(3)]);
    /// ```
    ///
    /// [`TreeID`]: crate::TreeID
    #[inline]
    pub fn appending_ids(&self) -> impl Iterator<Item = TreeID> {
        TreeID::appending_ids(self.len() + 1)
    }

    /// Appends a new entry to the log, returning the new permanent [`Node`]s to
    /// store.
    ///
    /// ## Examples
    /// ```rust
    /// use merkle_log::{MerkleLog, MemoryStore, Store, TreeID};
    /// use digest::Output;
    /// use sha2::Sha256;
    ///
    /// let mut store = MemoryStore::default();
    ///
    /// let mut entry = b"hello";
    /// let mut log = MerkleLog::<Sha256, [u8; 32]>::new(&entry);
    /// store.set_leaf(log.head_id(), *log.head()).unwrap();
    /// assert_eq!(log.len(), 1);
    /// assert_eq!(log.head_id(), TreeID::from(0));
    /// assert_eq!(log.head(), store.get(&log.head_id()).unwrap());
    ///
    /// log.append(b"world", &mut store).unwrap();
    /// assert_eq!(log.len(), 2);
    /// assert_eq!(log.head_id(), TreeID::from(2));
    /// assert_eq!(log.root(), store.get(&TreeID::from(1)).unwrap());
    /// ```
    ///
    /// [`Node`]: crate::Node
    pub fn append<S: Store<N>>(
        &mut self,
        entry: impl AsRef<[u8]>,
        store: &mut S,
    ) -> Result<(), Error> {
        let new_index = self.index + 1;
        let new_head_id = TreeID::leaf(new_index);
        let new_head = D::leaf_digest(entry.as_ref());

        let mut current = new_head;
        let mut current_id = new_head_id;
        let mut new_nodes = BTreeMap::new();

        for subroot_id in self
            .appending_ids()
            .collect::<Vec<TreeID>>()
            .into_iter()
            .rev()
        {
            let subroot = store.get(&subroot_id)?;
            current_id = current_id.parent();
            current = D::node_digest((subroot_id, &subroot), (current_id, &current));

            if current_id == subroot_id.parent() {
                new_nodes.insert(current_id, current);
            }
        }

        new_nodes.insert(new_head_id, new_head);
        store.set_many(new_nodes.into_iter())?;

        self.index = new_index;
        self.head = new_head;
        self.root = current;
        Ok(())
    }

    /// Computes the root hash of a balanced merkle tree, starting from the
    /// `leaf_id` node.
    pub(crate) fn root_hash<S: Store<N>>(
        leaf_id: TreeID,
        leaf_node: &N,
        height: u8,
        in_store: &S,
    ) -> Result<N, Error> {
        use core::cmp::Ordering::*;

        let mut current_id = leaf_id;
        let mut current = *leaf_node;
        for _ in 0..height {
            let sibling_id = current_id.sibling();
            let sibling = in_store.get(&sibling_id)?;

            current = match current_id.cmp(&sibling_id) {
                Less => D::node_digest((current_id, &current), (sibling_id, &sibling)),
                Greater => D::node_digest((sibling_id, &sibling), (current_id, &current)),
                _ => unreachable!(),
            };
            current_id = current_id.parent();
        }

        Ok(current)
    }
}

impl<D: Digest<N> + Clone, N: Node> Copy for MerkleLog<D, N> {}
impl<D: Digest<N>, N: Node> PartialEq for MerkleLog<D, N> {
    fn eq(&self, other: &Self) -> bool {
        self.head == other.head
            && self.root == other.root
            && self.index == other.index
            && self._digest == other._digest
    }
}
impl<D: Digest<N>, N: Node> Eq for MerkleLog<D, N> {}

#[cfg(test)]
mod tests {
    use super::*;
    use sha2::Sha256;

    type TestLog = MerkleLog<Sha256, [u8; 32]>;
    type MemStore = MemoryStore<[u8; 32]>;

    // reference trees
    // proving (2), providing [0] w/ static {1}:
    //         x
    //    1      \
    // [0]  (2)   4
    //
    // proving (2), providing [0, 5, 9] w/ static {3, 9}:
    //                   7
    //         3                  x
    //     1       [5]      [9]     \
    // [0]  (2)   4   6    8   10    12
    //
    // proving (26), providing [7, 19, 21, 24] with static {7, 19}:
    //                               15
    //              [7]                                   \
    //       3               11              [19]          |
    //   1       5       9       13      17       [21]     25
    // 0   2   4   6   8  10   12  14  16  18    20  22 [24](26)

    fn new() -> (MemStore, TestLog) {
        let mut store = MemStore::default();
        let log = TestLog::new(&"hello world");
        let log_head = *log.head();
        store.set_leaf(log.head_id(), log_head).unwrap();
        (store, log)
    }

    #[test]
    fn creation() {
        let (_, log) = new();
        assert_eq!(log.head_id(), TreeID::from(0));
        assert_eq!(log.len(), 1);
        assert_eq!(log.head(), log.root());
    }

    #[test]
    fn prove_and_verify() {
        let (mut store, mut log) = new();
        let proof = log.prove(0, &store).unwrap();
        assert!(log.verify(0, log.head(), &proof).expect("failed to verify"));

        for idx in 1..=128u64 {
            let mut entry = alloc::string::String::new();
            core::fmt::write(&mut entry, format_args!("hello world x{}", idx))
                .expect("failed to generate entry");

            log.append(&entry, &mut store)
                .expect("failed to append entry to log and store");
            assert_eq!(log.len(), idx + 1);

            let proof = log
                .prove(idx, &store)
                .expect("failed to generate inclusion proof from log and store");
            assert!(
                log.verify(idx, log.head(), &proof)
                    .expect("failed to verify"),
                "failed verification for log of length {}",
                idx + 1
            );
        }
    }
}