1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
//! High-performance metrics storage.
mod storage;
use std::{
hash::BuildHasherDefault,
iter::repeat,
sync::{PoisonError, RwLock},
};
use hashbrown::{hash_map::RawEntryMut, HashMap};
use metrics::{Key, KeyHasher};
pub use storage::{AtomicStorage, Storage};
#[cfg(feature = "recency")]
mod recency;
#[cfg(feature = "recency")]
#[cfg_attr(docsrs, doc(cfg(feature = "recency")))]
pub use recency::{
Generation, Generational, GenerationalAtomicStorage, GenerationalStorage, Recency,
};
use crate::Hashable;
type RegistryHasher = KeyHasher;
type RegistryHashMap<K, V> = HashMap<K, V, BuildHasherDefault<RegistryHasher>>;
/// A high-performance metric registry.
///
/// `Registry` provides the ability to maintain a central listing of metrics mapped by a given key.
/// Metrics themselves are stored in the objects returned by `S`.
///
/// ## Using `Registry` as the basis of an exporter
///
/// As a reusable building blocking for building exporter implementations, users should look at
/// [`Key`] and [`AtomicStorage`] to use for their key and storage, respectively.
///
/// These two implementations provide behavior that is suitable for most exporters, providing
/// seamless integration with the existing key type used by the core
/// [`Recorder`][metrics::Recorder] trait, as well as atomic storage for metrics.
///
/// In some cases, users may prefer [`GenerationalAtomicStorage`] when know if a metric has been
/// touched, even if its value has not changed since the last time it was observed, is necessary.
///
/// ## Performance
///
/// `Registry` is optimized for reads.
pub struct Registry<K, S>
where
S: Storage<K>,
{
counters: Vec<RwLock<RegistryHashMap<K, S::Counter>>>,
gauges: Vec<RwLock<RegistryHashMap<K, S::Gauge>>>,
histograms: Vec<RwLock<RegistryHashMap<K, S::Histogram>>>,
shard_mask: usize,
storage: S,
}
impl Registry<Key, AtomicStorage> {
/// Creates a new `Registry` using a regular [`Key`] and atomic storage.
pub fn atomic() -> Self {
let shard_count = std::cmp::max(1, num_cpus::get()).next_power_of_two();
let shard_mask = shard_count - 1;
let counters =
repeat(()).take(shard_count).map(|_| RwLock::new(RegistryHashMap::default())).collect();
let gauges =
repeat(()).take(shard_count).map(|_| RwLock::new(RegistryHashMap::default())).collect();
let histograms =
repeat(()).take(shard_count).map(|_| RwLock::new(RegistryHashMap::default())).collect();
Self { counters, gauges, histograms, shard_mask, storage: AtomicStorage }
}
}
impl<K, S> Registry<K, S>
where
S: Storage<K>,
{
/// Creates a new `Registry`.
pub fn new(storage: S) -> Self {
let shard_count = std::cmp::max(1, num_cpus::get()).next_power_of_two();
let shard_mask = shard_count - 1;
let counters =
repeat(()).take(shard_count).map(|_| RwLock::new(RegistryHashMap::default())).collect();
let gauges =
repeat(()).take(shard_count).map(|_| RwLock::new(RegistryHashMap::default())).collect();
let histograms =
repeat(()).take(shard_count).map(|_| RwLock::new(RegistryHashMap::default())).collect();
Self { counters, gauges, histograms, shard_mask, storage }
}
/// Removes all metrics from the registry.
///
/// This operation is eventually consistent: metrics will be removed piecemeal, and this method
/// does not ensure that callers will see the registry as entirely empty at any given point.
pub fn clear(&self) {
for shard in &self.counters {
shard.write().unwrap_or_else(PoisonError::into_inner).clear();
}
for shard in &self.gauges {
shard.write().unwrap_or_else(PoisonError::into_inner).clear();
}
for shard in &self.histograms {
shard.write().unwrap_or_else(PoisonError::into_inner).clear();
}
}
/// Visits every counter stored in this registry.
///
/// This operation does not lock the entire registry, but proceeds directly through the
/// "subshards" that are kept internally. As a result, all subshards will be visited, but a
/// metric that existed at the exact moment that `visit_counters` was called may not actually be observed
/// if it is deleted before that subshard is reached. Likewise, a metric that is added after
/// the call to `visit_counters`, but before `visit_counters` finishes, may also not be observed.
pub fn visit_counters<F>(&self, mut collect: F)
where
F: FnMut(&K, &S::Counter),
{
for subshard in self.counters.iter() {
let shard_read = subshard.read().unwrap_or_else(PoisonError::into_inner);
for (key, counter) in shard_read.iter() {
collect(key, counter);
}
}
}
/// Visits every gauge stored in this registry.
///
/// This operation does not lock the entire registry, but proceeds directly through the
/// "subshards" that are kept internally. As a result, all subshards will be visited, but a
/// metric that existed at the exact moment that `visit_gauges` was called may not actually be observed
/// if it is deleted before that subshard is reached. Likewise, a metric that is added after
/// the call to `visit_gauges`, but before `visit_gauges` finishes, may also not be observed.
pub fn visit_gauges<F>(&self, mut collect: F)
where
F: FnMut(&K, &S::Gauge),
{
for subshard in self.gauges.iter() {
let shard_read = subshard.read().unwrap_or_else(PoisonError::into_inner);
for (key, gauge) in shard_read.iter() {
collect(key, gauge);
}
}
}
/// Visits every histogram stored in this registry.
///
/// This operation does not lock the entire registry, but proceeds directly through the
/// "subshards" that are kept internally. As a result, all subshards will be visited, but a
/// metric that existed at the exact moment that `visit_histograms` was called may not actually be observed
/// if it is deleted before that subshard is reached. Likewise, a metric that is added after
/// the call to `visit_histograms`, but before `visit_histograms` finishes, may also not be observed.
pub fn visit_histograms<F>(&self, mut collect: F)
where
F: FnMut(&K, &S::Histogram),
{
for subshard in self.histograms.iter() {
let shard_read = subshard.read().unwrap_or_else(PoisonError::into_inner);
for (key, histogram) in shard_read.iter() {
collect(key, histogram);
}
}
}
/// Retains only counters specified by the predicate.
///
/// Remove all counters for which f(&k, &c) returns false. This operation proceeds
/// through the "subshards" in the same way as `visit_counters`.
pub fn retain_counters<F>(&self, mut f: F)
where
F: FnMut(&K, &S::Counter) -> bool,
{
for subshard in self.counters.iter() {
let mut shard_write = subshard.write().unwrap_or_else(PoisonError::into_inner);
shard_write.retain(|k, c| f(k, c));
}
}
/// Retains only gauges specified by the predicate.
///
/// Remove all gauges for which f(&k, &g) returns false. This operation proceeds
/// through the "subshards" in the same way as `visit_gauges`.
pub fn retain_gauges<F>(&self, mut f: F)
where
F: FnMut(&K, &S::Gauge) -> bool,
{
for subshard in self.gauges.iter() {
let mut shard_write = subshard.write().unwrap_or_else(PoisonError::into_inner);
shard_write.retain(|k, g| f(k, g));
}
}
/// Retains only histograms specified by the predicate.
///
/// Remove all histograms for which f(&k, &h) returns false. This operation proceeds
/// through the "subshards" in the same way as `visit_histograms`.
pub fn retain_histograms<F>(&self, mut f: F)
where
F: FnMut(&K, &S::Histogram) -> bool,
{
for subshard in self.histograms.iter() {
let mut shard_write = subshard.write().unwrap_or_else(PoisonError::into_inner);
shard_write.retain(|k, h| f(k, h));
}
}
}
impl<K, S> Registry<K, S>
where
S: Storage<K>,
K: Hashable,
{
#[inline]
fn get_hash_and_shard_for_counter(
&self,
key: &K,
) -> (u64, &RwLock<RegistryHashMap<K, S::Counter>>) {
let hash = key.hashable();
// SAFETY: We initialize vector of subshards with a power-of-two value, and
// `self.shard_mask` is `self.counters.len() - 1`, thus we can never have a result from the
// masking operation that results in a value which is not in bounds of our subshards vector.
let shard = unsafe { self.counters.get_unchecked(hash as usize & self.shard_mask) };
(hash, shard)
}
#[inline]
fn get_hash_and_shard_for_gauge(
&self,
key: &K,
) -> (u64, &RwLock<RegistryHashMap<K, S::Gauge>>) {
let hash = key.hashable();
// SAFETY: We initialize the vector of subshards with a power-of-two value, and
// `self.shard_mask` is `self.gauges.len() - 1`, thus we can never have a result from the
// masking operation that results in a value which is not in bounds of our subshards vector.
let shard = unsafe { self.gauges.get_unchecked(hash as usize & self.shard_mask) };
(hash, shard)
}
#[inline]
fn get_hash_and_shard_for_histogram(
&self,
key: &K,
) -> (u64, &RwLock<RegistryHashMap<K, S::Histogram>>) {
let hash = key.hashable();
// SAFETY: We initialize the vector of subshards with a power-of-two value, and
// `self.shard_mask` is `self.histograms.len() - 1`, thus we can never have a result from
// the masking operation that results in a value which is not in bounds of our subshards
// vector.
let shard = unsafe { self.histograms.get_unchecked(hash as usize & self.shard_mask) };
(hash, shard)
}
}
impl<K, S> Registry<K, S>
where
S: Storage<K>,
K: Eq + Hashable,
{
/// Deletes a counter from the registry.
///
/// Returns `true` if the counter existed and was removed, `false` otherwise.
pub fn delete_counter(&self, key: &K) -> bool {
let (hash, shard) = self.get_hash_and_shard_for_counter(key);
let mut shard_write = shard.write().unwrap_or_else(PoisonError::into_inner);
let entry = shard_write.raw_entry_mut().from_key_hashed_nocheck(hash, key);
if let RawEntryMut::Occupied(entry) = entry {
let _ = entry.remove_entry();
return true;
}
false
}
/// Deletes a gauge from the registry.
///
/// Returns `true` if the gauge existed and was removed, `false` otherwise.
pub fn delete_gauge(&self, key: &K) -> bool {
let (hash, shard) = self.get_hash_and_shard_for_gauge(key);
let mut shard_write = shard.write().unwrap_or_else(PoisonError::into_inner);
let entry = shard_write.raw_entry_mut().from_key_hashed_nocheck(hash, key);
if let RawEntryMut::Occupied(entry) = entry {
let _ = entry.remove_entry();
return true;
}
false
}
/// Deletes a histogram from the registry.
///
/// Returns `true` if the histogram existed and was removed, `false` otherwise.
pub fn delete_histogram(&self, key: &K) -> bool {
let (hash, shard) = self.get_hash_and_shard_for_histogram(key);
let mut shard_write = shard.write().unwrap_or_else(PoisonError::into_inner);
let entry = shard_write.raw_entry_mut().from_key_hashed_nocheck(hash, key);
if let RawEntryMut::Occupied(entry) = entry {
let _ = entry.remove_entry();
return true;
}
false
}
/// Gets a copy of an existing counter.
pub fn get_counter(&self, key: &K) -> Option<S::Counter> {
let (hash, shard) = self.get_hash_and_shard_for_counter(key);
let shard_read = shard.read().unwrap_or_else(PoisonError::into_inner);
shard_read.raw_entry().from_key_hashed_nocheck(hash, key).map(|(_, v)| v.clone())
}
/// Gets a copy of an existing gauge.
pub fn get_gauge(&self, key: &K) -> Option<S::Gauge> {
let (hash, shard) = self.get_hash_and_shard_for_gauge(key);
let shard_read = shard.read().unwrap_or_else(PoisonError::into_inner);
shard_read.raw_entry().from_key_hashed_nocheck(hash, key).map(|(_, v)| v.clone())
}
/// Gets a copy of an existing histogram.
pub fn get_histogram(&self, key: &K) -> Option<S::Histogram> {
let (hash, shard) = self.get_hash_and_shard_for_histogram(key);
let shard_read = shard.read().unwrap_or_else(PoisonError::into_inner);
shard_read.raw_entry().from_key_hashed_nocheck(hash, key).map(|(_, v)| v.clone())
}
}
impl<K, S> Registry<K, S>
where
S: Storage<K>,
K: Clone + Eq + Hashable,
{
/// Gets or creates the given counter.
///
/// The `op` function will be called for the counter under the given `key`, with the counter
/// first being created if it does not already exist.
pub fn get_or_create_counter<O, V>(&self, key: &K, op: O) -> V
where
O: FnOnce(&S::Counter) -> V,
{
let (hash, shard) = self.get_hash_and_shard_for_counter(key);
// Try and get the handle if it exists, running our operation if we succeed.
let shard_read = shard.read().unwrap_or_else(PoisonError::into_inner);
if let Some((_, v)) = shard_read.raw_entry().from_key_hashed_nocheck(hash, key) {
op(v)
} else {
// Switch to write guard and insert the handle first.
drop(shard_read);
let mut shard_write = shard.write().unwrap_or_else(PoisonError::into_inner);
let v = if let Some((_, v)) = shard_write.raw_entry().from_key_hashed_nocheck(hash, key)
{
v
} else {
let (_, v) = shard_write
.raw_entry_mut()
.from_key_hashed_nocheck(hash, key)
.or_insert_with(|| (key.clone(), self.storage.counter(key)));
v
};
op(v)
}
}
/// Gets or creates the given gauge.
///
/// The `op` function will be called for the gauge under the given `key`, with the gauge
/// first being created if it does not already exist.
pub fn get_or_create_gauge<O, V>(&self, key: &K, op: O) -> V
where
O: FnOnce(&S::Gauge) -> V,
{
let (hash, shard) = self.get_hash_and_shard_for_gauge(key);
// Try and get the handle if it exists, running our operation if we succeed.
let shard_read = shard.read().unwrap_or_else(PoisonError::into_inner);
if let Some((_, v)) = shard_read.raw_entry().from_key_hashed_nocheck(hash, key) {
op(v)
} else {
// Switch to write guard and insert the handle first.
drop(shard_read);
let mut shard_write = shard.write().unwrap_or_else(PoisonError::into_inner);
let v = if let Some((_, v)) = shard_write.raw_entry().from_key_hashed_nocheck(hash, key)
{
v
} else {
let (_, v) = shard_write
.raw_entry_mut()
.from_key_hashed_nocheck(hash, key)
.or_insert_with(|| (key.clone(), self.storage.gauge(key)));
v
};
op(v)
}
}
/// Gets or creates the given histogram.
///
/// The `op` function will be called for the histogram under the given `key`, with the histogram
/// first being created if it does not already exist.
pub fn get_or_create_histogram<O, V>(&self, key: &K, op: O) -> V
where
O: FnOnce(&S::Histogram) -> V,
{
let (hash, shard) = self.get_hash_and_shard_for_histogram(key);
// Try and get the handle if it exists, running our operation if we succeed.
let shard_read = shard.read().unwrap_or_else(PoisonError::into_inner);
if let Some((_, v)) = shard_read.raw_entry().from_key_hashed_nocheck(hash, key) {
op(v)
} else {
// Switch to write guard and insert the handle first.
drop(shard_read);
let mut shard_write = shard.write().unwrap_or_else(PoisonError::into_inner);
let v = if let Some((_, v)) = shard_write.raw_entry().from_key_hashed_nocheck(hash, key)
{
v
} else {
let (_, v) = shard_write
.raw_entry_mut()
.from_key_hashed_nocheck(hash, key)
.or_insert_with(|| (key.clone(), self.storage.histogram(key)));
v
};
op(v)
}
}
/// Gets a map of all present counters, mapped by key.
///
/// This map is a point-in-time snapshot of the registry.
pub fn get_counter_handles(&self) -> HashMap<K, S::Counter> {
let mut counters = HashMap::new();
self.visit_counters(|k, v| {
counters.insert(k.clone(), v.clone());
});
counters
}
/// Gets a map of all present gauges, mapped by key.
///
/// This map is a point-in-time snapshot of the registry.
pub fn get_gauge_handles(&self) -> HashMap<K, S::Gauge> {
let mut gauges = HashMap::new();
self.visit_gauges(|k, v| {
gauges.insert(k.clone(), v.clone());
});
gauges
}
/// Gets a map of all present histograms, mapped by key.
///
/// This map is a point-in-time snapshot of the registry.
pub fn get_histogram_handles(&self) -> HashMap<K, S::Histogram> {
let mut histograms = HashMap::new();
self.visit_histograms(|k, v| {
histograms.insert(k.clone(), v.clone());
});
histograms
}
}
#[cfg(test)]
mod tests {
use metrics::{atomics::AtomicU64, CounterFn, Key};
use super::Registry;
use std::sync::{atomic::Ordering, Arc};
#[test]
fn test_registry() {
let registry = Registry::atomic();
let key = Key::from_name("foobar");
let entries = registry.get_counter_handles();
assert_eq!(entries.len(), 0);
assert!(registry.get_counter(&key).is_none());
registry.get_or_create_counter(&key, |c: &Arc<AtomicU64>| c.increment(1));
let initial_entries = registry.get_counter_handles();
assert_eq!(initial_entries.len(), 1);
let initial_entry: (Key, Arc<AtomicU64>) =
initial_entries.into_iter().next().expect("failed to get first entry");
let (ikey, ivalue) = initial_entry;
assert_eq!(ikey, key);
assert_eq!(ivalue.load(Ordering::SeqCst), 1);
registry.get_or_create_counter(&key, |c: &Arc<AtomicU64>| c.increment(1));
let updated_entries = registry.get_counter_handles();
assert_eq!(updated_entries.len(), 1);
let updated_entry: (Key, Arc<AtomicU64>) =
updated_entries.into_iter().next().expect("failed to get updated entry");
let (ukey, uvalue) = updated_entry;
assert_eq!(ukey, key);
assert_eq!(uvalue.load(Ordering::SeqCst), 2);
let value = registry.get_counter(&key).expect("failed to get entry");
assert!(Arc::ptr_eq(&value, &uvalue));
registry.get_or_create_counter(&Key::from_name("baz"), |_| ());
assert_eq!(registry.get_counter_handles().len(), 2);
let mut n = 0;
registry.retain_counters(|k, _| {
n += 1;
k.name().starts_with("foo")
});
assert_eq!(n, 2);
assert_eq!(registry.get_counter_handles().len(), 1);
assert!(registry.delete_counter(&key));
let entries = registry.get_counter_handles();
assert_eq!(entries.len(), 0);
}
}