metrics_util/storage/reservoir.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
//! An atomic sampling reservoir.
use std::{
cell::UnsafeCell,
sync::{
atomic::{
AtomicBool, AtomicU64, AtomicUsize,
Ordering::{Acquire, Relaxed, Release},
},
Mutex,
},
};
use rand::{rngs::OsRng, Rng as _, SeedableRng as _};
use rand_xoshiro::Xoshiro256StarStar;
thread_local! {
static FAST_RNG: UnsafeCell<Xoshiro256StarStar> = {
UnsafeCell::new(Xoshiro256StarStar::from_rng(OsRng).unwrap())
};
}
fn fastrand(upper: usize) -> usize {
FAST_RNG.with(|rng| {
// SAFETY: We know it's safe to take a mutable reference since we're getting a pointer to a thread-local value,
// and the reference never outlives the closure executing on this thread.
let rng = unsafe { &mut *rng.get() };
rng.gen_range(0..upper)
})
}
struct Reservoir {
values: Box<[AtomicU64]>,
count: AtomicUsize,
}
impl Reservoir {
fn with_capacity(capacity: usize) -> Self {
let mut values = Vec::with_capacity(capacity);
for _ in 0..capacity {
values.push(AtomicU64::new(0));
}
Self { values: values.into_boxed_slice(), count: AtomicUsize::new(0) }
}
fn push(&self, value: f64) {
let idx = self.count.fetch_add(1, Relaxed);
if idx < self.values.len() {
self.values[idx].store(value.to_bits(), Relaxed);
} else {
let maybe_idx = fastrand(idx);
if maybe_idx < self.values.len() {
self.values[maybe_idx].store(value.to_bits(), Relaxed);
}
}
}
fn drain(&self) -> Drain<'_> {
let unsampled_len = self.count.load(Relaxed);
let len = if unsampled_len > self.values.len() { self.values.len() } else { unsampled_len };
Drain { reservoir: self, unsampled_len, len, idx: 0 }
}
}
/// A draining iterator over the samples in a reservoir.
pub struct Drain<'a> {
reservoir: &'a Reservoir,
unsampled_len: usize,
len: usize,
idx: usize,
}
impl<'a> Drain<'a> {
/// Returns the sample rate of the reservoir that produced this iterator.
///
/// The sample rate is the ratio of the number of samples pushed into the reservoir to the number of samples held in
/// the reservoir. When the reservoir has not been filled, the sample rate is 1.0. When more samples have been
/// pushed into the reservoir than its overall capacity, the sample rate is `size / count`, where `size` is the
/// reservoir's capacity and `count` is the number of samples pushed into the reservoir.
///
/// For example, if the reservoir holds 1,000 samples, and 100,000 values were pushed into the reservoir, the sample
/// rate would be 0.01 (100,000 / 1,000).
pub fn sample_rate(&self) -> f64 {
if self.unsampled_len == self.len {
1.0
} else {
self.len as f64 / self.unsampled_len as f64
}
}
}
impl<'a> Iterator for Drain<'a> {
type Item = f64;
fn next(&mut self) -> Option<Self::Item> {
if self.idx < self.len {
let value = f64::from_bits(self.reservoir.values[self.idx].load(Relaxed));
self.idx += 1;
Some(value)
} else {
None
}
}
}
impl ExactSizeIterator for Drain<'_> {
fn len(&self) -> usize {
self.len - self.idx
}
}
impl<'a> Drop for Drain<'a> {
fn drop(&mut self) {
self.reservoir.count.store(0, Release);
}
}
/// An atomic sampling reservoir.
///
/// [Reservoir sampling][rs] is a technique used to produce a statistically representative sample of a data stream, in a
/// fixed space, without knowing the length of the stream in advance. `AtomicSamplingReservoir` is a thread-safe version of a
/// sampling reservoir, based on Vitter's ["Algorithm R"][vitter_paper].
///
/// Utilizes an A/B-based storage mechanism to avoid contention between producers and the consumer, and a fast,
/// thread-local PRNG ([Xoshiro256**][xoshiro256starstar]) to limit the per-call sampling overhead.
///
/// [rs]: https://en.wikipedia.org/wiki/Reservoir_sampling
/// [vitter_paper]: https://www.cs.umd.edu/~samir/498/vitter.pdf
/// [xoshiro256starstar]: https://prng.di.unimi.it
pub struct AtomicSamplingReservoir {
primary: Reservoir,
secondary: Reservoir,
use_primary: AtomicBool,
swap: Mutex<()>,
}
impl AtomicSamplingReservoir {
/// Creates a new `AtomicSamplingReservoir` that stores up to `size` samples.
pub fn new(size: usize) -> Self {
Self {
primary: Reservoir::with_capacity(size),
secondary: Reservoir::with_capacity(size),
use_primary: AtomicBool::new(true),
swap: Mutex::new(()),
}
}
/// Returns `true` if the reservoir is empty.
pub fn is_empty(&self) -> bool {
let use_primary = self.use_primary.load(Acquire);
if use_primary {
self.primary.count.load(Relaxed) == 0
} else {
self.secondary.count.load(Relaxed) == 0
}
}
/// Pushes a sample into the reservoir.
pub fn push(&self, value: f64) {
let use_primary = self.use_primary.load(Relaxed);
if use_primary {
self.primary.push(value);
} else {
self.secondary.push(value);
};
}
/// Consumes all samples in the reservoir, passing them to the provided closure.
///
/// The underlying storage is swapped before the closure is called, and the previous storage is consumed.
pub fn consume<F>(&self, mut f: F)
where
F: FnMut(Drain<'_>),
{
let _guard = self.swap.lock().unwrap();
// Swap the active reservoir.
let use_primary = self.use_primary.load(Acquire);
self.use_primary.store(!use_primary, Release);
// Consume the previous reservoir.
let drain = if use_primary { self.primary.drain() } else { self.secondary.drain() };
f(drain);
}
}