metrics_util/
bucket.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
use crossbeam_epoch::{pin as epoch_pin, Atomic, Guard, Owned, Shared};
use crossbeam_utils::Backoff;
use std::{
    cell::UnsafeCell,
    cmp::min,
    mem::{self, MaybeUninit},
    slice,
    sync::atomic::{AtomicUsize, Ordering},
};

#[cfg(target_pointer_width = "16")]
const BLOCK_SIZE: usize = 16;
#[cfg(target_pointer_width = "32")]
const BLOCK_SIZE: usize = 32;
#[cfg(target_pointer_width = "64")]
const BLOCK_SIZE: usize = 64;

const DEFERRED_BLOCK_BATCH_SIZE: usize = 32;

/// Discrete chunk of values with atomic read/write access.
struct Block<T> {
    // Write index.
    write: AtomicUsize,

    // Read bitmap.
    //
    // Internally, we track the write index which indicates what slot should be written by the next
    // writer.  This works fine as writers race via CAS to "acquire" a slot to write to.  The
    // trouble comes when attempting to read written values, as writers may still have writes
    // in-flight, thus leading to potential uninitialized reads, UB, and the world imploding.
    //
    // We use a simple scheme where writers acknowledge their writes by setting a bit in `read`
    // that corresponds to the index that they've written.  For example, a write at index 5 being
    // complete can be verified by checking if `1 << 5` in `read` is set.  This allows writers to
    // concurrently update `read` despite non-sequential indexes.
    //
    // Additionally, an optimization is then available where finding the longest sequential run of
    // initialized slots can be trivially calculated by getting the number of trailing ones in
    // `read`.  This allows reading the "length" of initialized values in constant time, without
    // blocking.
    //
    // This optimization does mean, however, that the simplest implementation is limited to block
    // sizes that match the number of bits available in the target platform pointer size.  A
    // potential future optimization could use const generics to size an array of read bitmap
    // atomics such that the total sum of the bits could be efficiently utilized, although this
    // would involve more complex logic to read all of the atomics.
    read: AtomicUsize,

    // The individual slots.
    slots: [MaybeUninit<UnsafeCell<T>>; BLOCK_SIZE],

    // The "next" block to iterate, aka the block that came before this one.
    next: Atomic<Block<T>>,
}

impl<T> Block<T> {
    /// Creates a new [`Block`].
    pub fn new() -> Self {
        // SAFETY:
        // At a high level, all types inherent to  `Block<T>` can be safely zero initialized.
        //
        // `write`/`read` are meant to start at zero (`AtomicUsize`)
        // `slots` is an array of `MaybeUninit`, which is zero init safe
        // `next` is meant to start as "null", where the pointer (`AtomicUsize`) is zero
        unsafe { MaybeUninit::zeroed().assume_init() }
    }

    // Gets the length of the next block, if it exists.
    pub(crate) fn next_len(&self, guard: &Guard) -> usize {
        let tail = self.next.load(Ordering::Acquire, guard);
        if tail.is_null() {
            return 0;
        }

        let tail_block = unsafe { tail.deref() };
        tail_block.len()
    }

    /// Gets the current length of this block.
    pub fn len(&self) -> usize {
        self.read.load(Ordering::Acquire).trailing_ones() as usize
    }

    // Whether or not this block is currently quieseced i.e. no in-flight writes.
    pub fn is_quiesced(&self) -> bool {
        let len = self.len();
        if len == BLOCK_SIZE {
            return true;
        }

        // We have to clamp self.write since multiple threads might race on filling the last block,
        // so the value could actually exceed BLOCK_SIZE.
        min(self.write.load(Ordering::Acquire), BLOCK_SIZE) == len
    }

    /// Gets a slice of the data written to this block.
    pub fn data(&self) -> &[T] {
        // SAFETY:
        // We can always get a pointer to the first slot, but the reference we give back will only
        // be as long as the number of slots written, indicated by `len`.  The value of `len` is
        // only updated once a slot has been fully written, guaranteeing the slot is initialized.
        let len = self.len();
        unsafe {
            let head = self.slots.get_unchecked(0).as_ptr();
            slice::from_raw_parts(head as *const T, len)
        }
    }

    /// Pushes a value into this block.
    pub fn push(&self, value: T) -> Result<(), T> {
        // Try to increment the index.  If we've reached the end of the block, let the bucket know
        // so it can attach another block.
        let index = self.write.fetch_add(1, Ordering::AcqRel);
        if index >= BLOCK_SIZE {
            return Err(value);
        }

        // SAFETY:
        // - We never index outside of our block size.
        // - Each slot is `MaybeUninit`, which itself can be safely zero initialized.
        // - We're writing an initialized value into the slot before anyone is able to ever read
        //   it, ensuring no uninitialized access.
        unsafe {
            // Update the slot.
            self.slots.get_unchecked(index).assume_init_ref().get().write(value);
        }

        // Scoot our read index forward.
        self.read.fetch_or(1 << index, Ordering::AcqRel);

        Ok(())
    }
}

unsafe impl<T: Send> Send for Block<T> {}
unsafe impl<T: Sync> Sync for Block<T> {}

impl<T> Drop for Block<T> {
    fn drop(&mut self) {
        while !self.is_quiesced() {}

        // SAFETY:
        // The value of `len` is only updated once a slot has been fully written, guaranteeing the
        // slot is initialized.  Thus, we're only touching initialized slots here.
        unsafe {
            let len = self.len();
            for i in 0..len {
                self.slots.get_unchecked(i).assume_init_ref().get().drop_in_place();
            }
        }
    }
}

impl<T> std::fmt::Debug for Block<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let guard = &epoch_pin();
        let has_next = !self.next.load(Ordering::Acquire, guard).is_null();
        f.debug_struct("Block")
            .field("type", &std::any::type_name::<T>())
            .field("block_size", &BLOCK_SIZE)
            .field("write", &self.write.load(Ordering::Acquire))
            .field("read", &self.read.load(Ordering::Acquire))
            .field("len", &self.len())
            .field("has_next", &has_next)
            .finish()
    }
}

/// A lock-free bucket with snapshot capabilities.
///
/// This bucket is implemented as a singly-linked list of blocks, where each block is a small
/// buffer that can hold a handful of elements.  There is no limit to how many elements can be in
/// the bucket at a time.  Blocks are dynamically allocated as elements are pushed into the bucket.
///
/// Unlike a queue, buckets cannot be drained element by element: callers must iterate the whole
/// structure.  Reading the bucket happens in a quasi-reverse fashion, to allow writers to make
/// forward progress without affecting the iteration of the previously written values.
///
/// For example, in a scenario where an internal block can hold 4 elements, and the caller has
/// written 10 elements to the bucket, you would expect to see the values in this order when iterating:
///
/// ```text
/// [6 7 8 9] [2 3 4 5] [0 1]
/// ```
///
/// Block sizes are dependent on the target architecture, where each block can hold N items, and N
/// is the number of bits in the target architecture's pointer width.
#[derive(Debug)]
pub struct AtomicBucket<T> {
    tail: Atomic<Block<T>>,
}

impl<T> AtomicBucket<T> {
    /// Creates a new, empty bucket.
    pub fn new() -> Self {
        AtomicBucket { tail: Atomic::null() }
    }

    /// Checks whether or not this bucket is empty.
    pub fn is_empty(&self) -> bool {
        let guard = &epoch_pin();
        let tail = self.tail.load(Ordering::Acquire, guard);
        if tail.is_null() {
            return true;
        }

        // We have to check the next block of our tail in case the current tail is simply a fresh
        // block that has not been written to yet.
        let tail_block = unsafe { tail.deref() };
        tail_block.len() == 0 && tail_block.next_len(guard) == 0
    }

    /// Pushes an element into the bucket.
    pub fn push(&self, value: T) {
        let mut original = value;
        let guard = &epoch_pin();
        loop {
            // Load the tail block, or install a new one.
            let mut tail = self.tail.load(Ordering::Acquire, guard);
            if tail.is_null() {
                // No blocks at all yet.  We need to create one.
                match self.tail.compare_exchange(
                    Shared::null(),
                    Owned::new(Block::new()),
                    Ordering::AcqRel,
                    Ordering::Acquire,
                    guard,
                ) {
                    // We won the race to install the new block.
                    Ok(ptr) => tail = ptr,
                    // Somebody else beat us, so just update our pointer.
                    Err(e) => tail = e.current,
                }
            }

            // We have a block now, so we need to try writing to it.
            let tail_block = unsafe { tail.deref() };
            match tail_block.push(original) {
                // If the push was OK, then the block wasn't full.  It might _now_ be full, but we'll
                // let future callers deal with installing a new block if necessary.
                Ok(_) => return,
                // The block was full, so we've been given the value back and we need to install a new block.
                Err(value) => {
                    match self.tail.compare_exchange(
                        tail,
                        Owned::new(Block::new()),
                        Ordering::AcqRel,
                        Ordering::Acquire,
                        guard,
                    ) {
                        // We managed to install the block, so we need to link this new block to
                        // the nextious block.
                        Ok(ptr) => {
                            let new_tail = unsafe { ptr.deref() };
                            new_tail.next.store(tail, Ordering::Release);

                            // Now push into our new block.
                            match new_tail.push(value) {
                                // We wrote the value successfully, so we're good here!
                                Ok(_) => return,
                                // The block was full, so just loop and start over.
                                Err(value) => {
                                    original = value;
                                    continue;
                                }
                            }
                        }
                        // Somebody else installed the block before us, so let's just start over.
                        Err(_) => original = value,
                    }
                }
            }
        }
    }

    /// Collects all of the elements written to the bucket.
    ///
    /// This operation can be slow as it involves allocating enough space to hold all of the
    /// elements within the bucket.  Consider [`data_with`](AtomicBucket::data_with) to incrementally iterate
    /// the internal blocks within the bucket.
    ///
    /// Elements are in partial reverse order: blocks are iterated in reverse order, but the
    /// elements within them will appear in their original order.
    pub fn data(&self) -> Vec<T>
    where
        T: Clone,
    {
        let mut values = Vec::new();
        self.data_with(|block| values.extend_from_slice(block));
        values
    }

    /// Iterates all of the elements written to the bucket, invoking `f` for each block.
    ///
    /// Elements are in partial reverse order: blocks are iterated in reverse order, but the
    /// elements within them will appear in their original order.
    pub fn data_with<F>(&self, mut f: F)
    where
        F: FnMut(&[T]),
    {
        let guard = &epoch_pin();
        let backoff = Backoff::new();

        // While we have a valid block -- either `tail` or the next block as we keep reading -- we
        // load the data from each block and process it by calling `f`.
        let mut block_ptr = self.tail.load(Ordering::Acquire, guard);
        while !block_ptr.is_null() {
            let block = unsafe { block_ptr.deref() };

            // We wait for the block to be quiesced to ensure we get any in-flight writes, and
            // snoozing specifically yields the reading thread to ensure things are given a
            // chance to complete.
            while !block.is_quiesced() {
                backoff.snooze();
            }

            // Read the data out of the block.
            let data = block.data();
            f(data);

            // Load the next block.
            block_ptr = block.next.load(Ordering::Acquire, guard);
        }
    }

    /// Clears the bucket.
    ///
    /// Deallocation of the internal blocks happens only when all readers have finished, and so
    /// will not necessarily occur during or immediately preceding this method.
    ///
    /// # Note
    /// This method will not affect reads that are already in progress.
    pub fn clear(&self) {
        self.clear_with(|_: &[T]| {})
    }

    /// Clears the bucket, invoking `f` for every block that will be cleared.
    ///
    /// Deallocation of the internal blocks happens only when all readers have finished, and so
    /// will not necessarily occur during or immediately preceding this method.
    ///
    /// This method is useful for accumulating values and then observing them, in a way that allows
    /// the caller to avoid visiting the same values again the next time.
    ///
    /// This method allows a pattern of observing values before they're cleared, with a clear
    /// demarcation. A similar pattern used in the wild would be to have some data structure, like
    /// a vector, which is continuously filled, and then eventually swapped out with a new, empty
    /// vector, allowing the caller to read all of the old values while new values are being
    /// written, over and over again.
    ///
    /// # Note
    /// This method will not affect reads that are already in progress.
    pub fn clear_with<F>(&self, mut f: F)
    where
        F: FnMut(&[T]),
    {
        // We simply swap the tail pointer which effectively clears the bucket.  Callers might
        // still be in process of writing to the tail node, or reading the data, but new callers
        // will see it as empty until another write proceeds.
        let guard = &epoch_pin();
        let mut block_ptr = self.tail.load(Ordering::Acquire, guard);
        if !block_ptr.is_null()
            && self
                .tail
                .compare_exchange(
                    block_ptr,
                    Shared::null(),
                    Ordering::SeqCst,
                    Ordering::SeqCst,
                    guard,
                )
                .is_ok()
        {
            let backoff = Backoff::new();
            let mut freeable_blocks = Vec::new();

            // While we have a valid block -- either `tail` or the next block as we keep reading -- we
            // load the data from each block and process it by calling `f`.
            while !block_ptr.is_null() {
                let block = unsafe { block_ptr.deref() };

                // We wait for the block to be quiesced to ensure we get any in-flight writes, and
                // snoozing specifically yields the reading thread to ensure things are given a
                // chance to complete.
                while !block.is_quiesced() {
                    backoff.snooze();
                }

                // Read the data out of the block.
                let data = block.data();
                f(data);

                // Load the next block and take the shared reference to the current.
                let old_block_ptr =
                    mem::replace(&mut block_ptr, block.next.load(Ordering::Acquire, guard));

                freeable_blocks.push(old_block_ptr);
                if freeable_blocks.len() >= DEFERRED_BLOCK_BATCH_SIZE {
                    let blocks = mem::take(&mut freeable_blocks);
                    unsafe {
                        guard.defer_unchecked(move || {
                            for block in blocks {
                                drop(block.into_owned());
                            }
                        });
                    }
                }
            }

            // Free any remaining old blocks.
            if !freeable_blocks.is_empty() {
                unsafe {
                    guard.defer_unchecked(move || {
                        for block in freeable_blocks {
                            drop(block.into_owned());
                        }
                    });
                }
            }

            // This asks the global collector to attempt to drive execution of deferred operations a
            // little sooner than it may have done so otherwise.
            guard.flush();
        }
    }
}

impl<T> Default for AtomicBucket<T> {
    fn default() -> Self {
        Self { tail: Atomic::null() }
    }
}

#[cfg(test)]
mod tests {
    use super::{AtomicBucket, Block, BLOCK_SIZE};
    use crossbeam_utils::thread::scope;

    #[test]
    fn test_create_new_block() {
        let block: Block<u64> = Block::new();
        assert_eq!(block.len(), 0);

        let data = block.data();
        assert_eq!(data.len(), 0);
    }

    #[test]
    fn test_block_write_then_read() {
        let block = Block::new();
        assert_eq!(block.len(), 0);

        let data = block.data();
        assert_eq!(data.len(), 0);

        let result = block.push(42);
        assert!(result.is_ok());
        assert_eq!(block.len(), 1);

        let data = block.data();
        assert_eq!(data.len(), 1);
        assert_eq!(data[0], 42);
    }

    #[test]
    fn test_block_write_until_full_then_read() {
        let block = Block::new();
        assert_eq!(block.len(), 0);

        let data = block.data();
        assert_eq!(data.len(), 0);

        let mut i = 0;
        let mut total = 0;
        while i < BLOCK_SIZE as u64 {
            assert!(block.push(i).is_ok());

            total += i;
            i += 1;
        }

        let data = block.data();
        assert_eq!(data.len(), BLOCK_SIZE);

        let sum: u64 = data.iter().sum();
        assert_eq!(sum, total);

        let result = block.push(42);
        assert!(result.is_err());
    }

    #[test]
    fn test_block_write_until_full_then_read_mt() {
        let block = Block::new();
        assert_eq!(block.len(), 0);

        let data = block.data();
        assert_eq!(data.len(), 0);

        let res = scope(|s| {
            let t1 = s.spawn(|_| {
                let mut i = 0;
                let mut total = 0;
                while i < BLOCK_SIZE as u64 / 2 {
                    assert!(block.push(i).is_ok());

                    total += i;
                    i += 1;
                }
                total
            });

            let t2 = s.spawn(|_| {
                let mut i = 0;
                let mut total = 0;
                while i < BLOCK_SIZE as u64 / 2 {
                    assert!(block.push(i).is_ok());

                    total += i;
                    i += 1;
                }
                total
            });

            let t1_total = t1.join().unwrap();
            let t2_total = t2.join().unwrap();

            t1_total + t2_total
        });

        let total = res.unwrap();

        let data = block.data();
        assert_eq!(data.len(), BLOCK_SIZE);

        let sum: u64 = data.iter().sum();
        assert_eq!(sum, total);

        let result = block.push(42);
        assert!(result.is_err());
    }

    #[test]
    fn test_bucket_write_then_read() {
        let bucket = AtomicBucket::new();
        bucket.push(42);

        let snapshot = bucket.data();
        assert_eq!(snapshot.len(), 1);
        assert_eq!(snapshot[0], 42);
    }

    #[test]
    fn test_bucket_multiple_blocks_write_then_read() {
        let bucket = AtomicBucket::new();

        let snapshot = bucket.data();
        assert_eq!(snapshot.len(), 0);

        let target = (BLOCK_SIZE * 3 + BLOCK_SIZE / 2) as u64;
        let mut i = 0;
        let mut total = 0;
        while i < target {
            bucket.push(i);

            total += i;
            i += 1;
        }

        let snapshot = bucket.data();
        assert_eq!(snapshot.len(), target as usize);

        let sum: u64 = snapshot.iter().sum();
        assert_eq!(sum, total);
    }

    #[test]
    fn test_bucket_write_then_read_mt() {
        let bucket = AtomicBucket::new();

        let snapshot = bucket.data();
        assert_eq!(snapshot.len(), 0);

        let res = scope(|s| {
            let t1 = s.spawn(|_| {
                let mut i = 0;
                let mut total = 0;
                while i < BLOCK_SIZE as u64 * 100_000 {
                    bucket.push(i);

                    total += i;
                    i += 1;
                }
                total
            });

            let t2 = s.spawn(|_| {
                let mut i = 0;
                let mut total = 0;
                while i < BLOCK_SIZE as u64 * 100_000 {
                    bucket.push(i);

                    total += i;
                    i += 1;
                }
                total
            });

            let t1_total = t1.join().unwrap();
            let t2_total = t2.join().unwrap();

            t1_total + t2_total
        });

        let total = res.unwrap();

        let snapshot = bucket.data();
        assert_eq!(snapshot.len(), BLOCK_SIZE * 200_000);

        let sum = snapshot.iter().sum::<u64>();
        assert_eq!(sum, total);
    }

    #[test]
    fn test_clear_and_clear_with() {
        let bucket = AtomicBucket::new();

        let snapshot = bucket.data();
        assert_eq!(snapshot.len(), 0);

        let mut i = 0;
        let mut total_pushed = 0;
        while i < BLOCK_SIZE * 4 {
            bucket.push(i);

            total_pushed += i;
            i += 1;
        }

        let snapshot = bucket.data();
        assert_eq!(snapshot.len(), i);

        let mut total_accumulated = 0;
        bucket.clear_with(|xs| total_accumulated += xs.iter().sum::<usize>());
        assert_eq!(total_pushed, total_accumulated);

        let snapshot = bucket.data();
        assert_eq!(snapshot.len(), 0);
    }

    #[test]
    fn test_bucket_len_and_next_len() {
        let bucket = AtomicBucket::new();
        assert!(bucket.is_empty());

        let snapshot = bucket.data();
        assert_eq!(snapshot.len(), 0);

        // Just making sure that `is_empty` holds as we go from
        // the first block, to the second block, to exercise the
        // `Block::next_len` codepath.
        let mut i = 0;
        while i < BLOCK_SIZE * 2 {
            bucket.push(i);
            assert!(!bucket.is_empty());
            i += 1;
        }
    }
}