metrics_util/bucket.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
use crossbeam_epoch::{pin as epoch_pin, Atomic, Guard, Owned, Shared};
use crossbeam_utils::Backoff;
use std::{
cell::UnsafeCell,
cmp::min,
mem::{self, MaybeUninit},
slice,
sync::atomic::{AtomicUsize, Ordering},
};
#[cfg(target_pointer_width = "16")]
const BLOCK_SIZE: usize = 16;
#[cfg(target_pointer_width = "32")]
const BLOCK_SIZE: usize = 32;
#[cfg(target_pointer_width = "64")]
const BLOCK_SIZE: usize = 64;
const DEFERRED_BLOCK_BATCH_SIZE: usize = 32;
/// Discrete chunk of values with atomic read/write access.
struct Block<T> {
// Write index.
write: AtomicUsize,
// Read bitmap.
//
// Internally, we track the write index which indicates what slot should be written by the next
// writer. This works fine as writers race via CAS to "acquire" a slot to write to. The
// trouble comes when attempting to read written values, as writers may still have writes
// in-flight, thus leading to potential uninitialized reads, UB, and the world imploding.
//
// We use a simple scheme where writers acknowledge their writes by setting a bit in `read`
// that corresponds to the index that they've written. For example, a write at index 5 being
// complete can be verified by checking if `1 << 5` in `read` is set. This allows writers to
// concurrently update `read` despite non-sequential indexes.
//
// Additionally, an optimization is then available where finding the longest sequential run of
// initialized slots can be trivially calculated by getting the number of trailing ones in
// `read`. This allows reading the "length" of initialized values in constant time, without
// blocking.
//
// This optimization does mean, however, that the simplest implementation is limited to block
// sizes that match the number of bits available in the target platform pointer size. A
// potential future optimization could use const generics to size an array of read bitmap
// atomics such that the total sum of the bits could be efficiently utilized, although this
// would involve more complex logic to read all of the atomics.
read: AtomicUsize,
// The individual slots.
slots: [MaybeUninit<UnsafeCell<T>>; BLOCK_SIZE],
// The "next" block to iterate, aka the block that came before this one.
next: Atomic<Block<T>>,
}
impl<T> Block<T> {
/// Creates a new [`Block`].
pub fn new() -> Self {
// SAFETY:
// At a high level, all types inherent to `Block<T>` can be safely zero initialized.
//
// `write`/`read` are meant to start at zero (`AtomicUsize`)
// `slots` is an array of `MaybeUninit`, which is zero init safe
// `next` is meant to start as "null", where the pointer (`AtomicUsize`) is zero
unsafe { MaybeUninit::zeroed().assume_init() }
}
// Gets the length of the next block, if it exists.
pub(crate) fn next_len(&self, guard: &Guard) -> usize {
let tail = self.next.load(Ordering::Acquire, guard);
if tail.is_null() {
return 0;
}
let tail_block = unsafe { tail.deref() };
tail_block.len()
}
/// Gets the current length of this block.
pub fn len(&self) -> usize {
self.read.load(Ordering::Acquire).trailing_ones() as usize
}
// Whether or not this block is currently quieseced i.e. no in-flight writes.
pub fn is_quiesced(&self) -> bool {
let len = self.len();
if len == BLOCK_SIZE {
return true;
}
// We have to clamp self.write since multiple threads might race on filling the last block,
// so the value could actually exceed BLOCK_SIZE.
min(self.write.load(Ordering::Acquire), BLOCK_SIZE) == len
}
/// Gets a slice of the data written to this block.
pub fn data(&self) -> &[T] {
// SAFETY:
// We can always get a pointer to the first slot, but the reference we give back will only
// be as long as the number of slots written, indicated by `len`. The value of `len` is
// only updated once a slot has been fully written, guaranteeing the slot is initialized.
let len = self.len();
unsafe {
let head = self.slots.get_unchecked(0).as_ptr();
slice::from_raw_parts(head as *const T, len)
}
}
/// Pushes a value into this block.
pub fn push(&self, value: T) -> Result<(), T> {
// Try to increment the index. If we've reached the end of the block, let the bucket know
// so it can attach another block.
let index = self.write.fetch_add(1, Ordering::AcqRel);
if index >= BLOCK_SIZE {
return Err(value);
}
// SAFETY:
// - We never index outside of our block size.
// - Each slot is `MaybeUninit`, which itself can be safely zero initialized.
// - We're writing an initialized value into the slot before anyone is able to ever read
// it, ensuring no uninitialized access.
unsafe {
// Update the slot.
self.slots.get_unchecked(index).assume_init_ref().get().write(value);
}
// Scoot our read index forward.
self.read.fetch_or(1 << index, Ordering::AcqRel);
Ok(())
}
}
unsafe impl<T: Send> Send for Block<T> {}
unsafe impl<T: Sync> Sync for Block<T> {}
impl<T> Drop for Block<T> {
fn drop(&mut self) {
while !self.is_quiesced() {}
// SAFETY:
// The value of `len` is only updated once a slot has been fully written, guaranteeing the
// slot is initialized. Thus, we're only touching initialized slots here.
unsafe {
let len = self.len();
for i in 0..len {
self.slots.get_unchecked(i).assume_init_ref().get().drop_in_place();
}
}
}
}
impl<T> std::fmt::Debug for Block<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let guard = &epoch_pin();
let has_next = !self.next.load(Ordering::Acquire, guard).is_null();
f.debug_struct("Block")
.field("type", &std::any::type_name::<T>())
.field("block_size", &BLOCK_SIZE)
.field("write", &self.write.load(Ordering::Acquire))
.field("read", &self.read.load(Ordering::Acquire))
.field("len", &self.len())
.field("has_next", &has_next)
.finish()
}
}
/// A lock-free bucket with snapshot capabilities.
///
/// This bucket is implemented as a singly-linked list of blocks, where each block is a small
/// buffer that can hold a handful of elements. There is no limit to how many elements can be in
/// the bucket at a time. Blocks are dynamically allocated as elements are pushed into the bucket.
///
/// Unlike a queue, buckets cannot be drained element by element: callers must iterate the whole
/// structure. Reading the bucket happens in a quasi-reverse fashion, to allow writers to make
/// forward progress without affecting the iteration of the previously written values.
///
/// For example, in a scenario where an internal block can hold 4 elements, and the caller has
/// written 10 elements to the bucket, you would expect to see the values in this order when iterating:
///
/// ```text
/// [6 7 8 9] [2 3 4 5] [0 1]
/// ```
///
/// Block sizes are dependent on the target architecture, where each block can hold N items, and N
/// is the number of bits in the target architecture's pointer width.
#[derive(Debug)]
pub struct AtomicBucket<T> {
tail: Atomic<Block<T>>,
}
impl<T> AtomicBucket<T> {
/// Creates a new, empty bucket.
pub fn new() -> Self {
AtomicBucket { tail: Atomic::null() }
}
/// Checks whether or not this bucket is empty.
pub fn is_empty(&self) -> bool {
let guard = &epoch_pin();
let tail = self.tail.load(Ordering::Acquire, guard);
if tail.is_null() {
return true;
}
// We have to check the next block of our tail in case the current tail is simply a fresh
// block that has not been written to yet.
let tail_block = unsafe { tail.deref() };
tail_block.len() == 0 && tail_block.next_len(guard) == 0
}
/// Pushes an element into the bucket.
pub fn push(&self, value: T) {
let mut original = value;
let guard = &epoch_pin();
loop {
// Load the tail block, or install a new one.
let mut tail = self.tail.load(Ordering::Acquire, guard);
if tail.is_null() {
// No blocks at all yet. We need to create one.
match self.tail.compare_exchange(
Shared::null(),
Owned::new(Block::new()),
Ordering::AcqRel,
Ordering::Acquire,
guard,
) {
// We won the race to install the new block.
Ok(ptr) => tail = ptr,
// Somebody else beat us, so just update our pointer.
Err(e) => tail = e.current,
}
}
// We have a block now, so we need to try writing to it.
let tail_block = unsafe { tail.deref() };
match tail_block.push(original) {
// If the push was OK, then the block wasn't full. It might _now_ be full, but we'll
// let future callers deal with installing a new block if necessary.
Ok(_) => return,
// The block was full, so we've been given the value back and we need to install a new block.
Err(value) => {
match self.tail.compare_exchange(
tail,
Owned::new(Block::new()),
Ordering::AcqRel,
Ordering::Acquire,
guard,
) {
// We managed to install the block, so we need to link this new block to
// the nextious block.
Ok(ptr) => {
let new_tail = unsafe { ptr.deref() };
new_tail.next.store(tail, Ordering::Release);
// Now push into our new block.
match new_tail.push(value) {
// We wrote the value successfully, so we're good here!
Ok(_) => return,
// The block was full, so just loop and start over.
Err(value) => {
original = value;
continue;
}
}
}
// Somebody else installed the block before us, so let's just start over.
Err(_) => original = value,
}
}
}
}
}
/// Collects all of the elements written to the bucket.
///
/// This operation can be slow as it involves allocating enough space to hold all of the
/// elements within the bucket. Consider [`data_with`](AtomicBucket::data_with) to incrementally iterate
/// the internal blocks within the bucket.
///
/// Elements are in partial reverse order: blocks are iterated in reverse order, but the
/// elements within them will appear in their original order.
pub fn data(&self) -> Vec<T>
where
T: Clone,
{
let mut values = Vec::new();
self.data_with(|block| values.extend_from_slice(block));
values
}
/// Iterates all of the elements written to the bucket, invoking `f` for each block.
///
/// Elements are in partial reverse order: blocks are iterated in reverse order, but the
/// elements within them will appear in their original order.
pub fn data_with<F>(&self, mut f: F)
where
F: FnMut(&[T]),
{
let guard = &epoch_pin();
let backoff = Backoff::new();
// While we have a valid block -- either `tail` or the next block as we keep reading -- we
// load the data from each block and process it by calling `f`.
let mut block_ptr = self.tail.load(Ordering::Acquire, guard);
while !block_ptr.is_null() {
let block = unsafe { block_ptr.deref() };
// We wait for the block to be quiesced to ensure we get any in-flight writes, and
// snoozing specifically yields the reading thread to ensure things are given a
// chance to complete.
while !block.is_quiesced() {
backoff.snooze();
}
// Read the data out of the block.
let data = block.data();
f(data);
// Load the next block.
block_ptr = block.next.load(Ordering::Acquire, guard);
}
}
/// Clears the bucket.
///
/// Deallocation of the internal blocks happens only when all readers have finished, and so
/// will not necessarily occur during or immediately preceding this method.
///
/// # Note
/// This method will not affect reads that are already in progress.
pub fn clear(&self) {
self.clear_with(|_: &[T]| {})
}
/// Clears the bucket, invoking `f` for every block that will be cleared.
///
/// Deallocation of the internal blocks happens only when all readers have finished, and so
/// will not necessarily occur during or immediately preceding this method.
///
/// This method is useful for accumulating values and then observing them, in a way that allows
/// the caller to avoid visiting the same values again the next time.
///
/// This method allows a pattern of observing values before they're cleared, with a clear
/// demarcation. A similar pattern used in the wild would be to have some data structure, like
/// a vector, which is continuously filled, and then eventually swapped out with a new, empty
/// vector, allowing the caller to read all of the old values while new values are being
/// written, over and over again.
///
/// # Note
/// This method will not affect reads that are already in progress.
pub fn clear_with<F>(&self, mut f: F)
where
F: FnMut(&[T]),
{
// We simply swap the tail pointer which effectively clears the bucket. Callers might
// still be in process of writing to the tail node, or reading the data, but new callers
// will see it as empty until another write proceeds.
let guard = &epoch_pin();
let mut block_ptr = self.tail.load(Ordering::Acquire, guard);
if !block_ptr.is_null()
&& self
.tail
.compare_exchange(
block_ptr,
Shared::null(),
Ordering::SeqCst,
Ordering::SeqCst,
guard,
)
.is_ok()
{
let backoff = Backoff::new();
let mut freeable_blocks = Vec::new();
// While we have a valid block -- either `tail` or the next block as we keep reading -- we
// load the data from each block and process it by calling `f`.
while !block_ptr.is_null() {
let block = unsafe { block_ptr.deref() };
// We wait for the block to be quiesced to ensure we get any in-flight writes, and
// snoozing specifically yields the reading thread to ensure things are given a
// chance to complete.
while !block.is_quiesced() {
backoff.snooze();
}
// Read the data out of the block.
let data = block.data();
f(data);
// Load the next block and take the shared reference to the current.
let old_block_ptr =
mem::replace(&mut block_ptr, block.next.load(Ordering::Acquire, guard));
freeable_blocks.push(old_block_ptr);
if freeable_blocks.len() >= DEFERRED_BLOCK_BATCH_SIZE {
let blocks = mem::take(&mut freeable_blocks);
unsafe {
guard.defer_unchecked(move || {
for block in blocks {
drop(block.into_owned());
}
});
}
}
}
// Free any remaining old blocks.
if !freeable_blocks.is_empty() {
unsafe {
guard.defer_unchecked(move || {
for block in freeable_blocks {
drop(block.into_owned());
}
});
}
}
// This asks the global collector to attempt to drive execution of deferred operations a
// little sooner than it may have done so otherwise.
guard.flush();
}
}
}
impl<T> Default for AtomicBucket<T> {
fn default() -> Self {
Self { tail: Atomic::null() }
}
}
#[cfg(test)]
mod tests {
use super::{AtomicBucket, Block, BLOCK_SIZE};
use crossbeam_utils::thread::scope;
#[test]
fn test_create_new_block() {
let block: Block<u64> = Block::new();
assert_eq!(block.len(), 0);
let data = block.data();
assert_eq!(data.len(), 0);
}
#[test]
fn test_block_write_then_read() {
let block = Block::new();
assert_eq!(block.len(), 0);
let data = block.data();
assert_eq!(data.len(), 0);
let result = block.push(42);
assert!(result.is_ok());
assert_eq!(block.len(), 1);
let data = block.data();
assert_eq!(data.len(), 1);
assert_eq!(data[0], 42);
}
#[test]
fn test_block_write_until_full_then_read() {
let block = Block::new();
assert_eq!(block.len(), 0);
let data = block.data();
assert_eq!(data.len(), 0);
let mut i = 0;
let mut total = 0;
while i < BLOCK_SIZE as u64 {
assert!(block.push(i).is_ok());
total += i;
i += 1;
}
let data = block.data();
assert_eq!(data.len(), BLOCK_SIZE);
let sum: u64 = data.iter().sum();
assert_eq!(sum, total);
let result = block.push(42);
assert!(result.is_err());
}
#[test]
fn test_block_write_until_full_then_read_mt() {
let block = Block::new();
assert_eq!(block.len(), 0);
let data = block.data();
assert_eq!(data.len(), 0);
let res = scope(|s| {
let t1 = s.spawn(|_| {
let mut i = 0;
let mut total = 0;
while i < BLOCK_SIZE as u64 / 2 {
assert!(block.push(i).is_ok());
total += i;
i += 1;
}
total
});
let t2 = s.spawn(|_| {
let mut i = 0;
let mut total = 0;
while i < BLOCK_SIZE as u64 / 2 {
assert!(block.push(i).is_ok());
total += i;
i += 1;
}
total
});
let t1_total = t1.join().unwrap();
let t2_total = t2.join().unwrap();
t1_total + t2_total
});
let total = res.unwrap();
let data = block.data();
assert_eq!(data.len(), BLOCK_SIZE);
let sum: u64 = data.iter().sum();
assert_eq!(sum, total);
let result = block.push(42);
assert!(result.is_err());
}
#[test]
fn test_bucket_write_then_read() {
let bucket = AtomicBucket::new();
bucket.push(42);
let snapshot = bucket.data();
assert_eq!(snapshot.len(), 1);
assert_eq!(snapshot[0], 42);
}
#[test]
fn test_bucket_multiple_blocks_write_then_read() {
let bucket = AtomicBucket::new();
let snapshot = bucket.data();
assert_eq!(snapshot.len(), 0);
let target = (BLOCK_SIZE * 3 + BLOCK_SIZE / 2) as u64;
let mut i = 0;
let mut total = 0;
while i < target {
bucket.push(i);
total += i;
i += 1;
}
let snapshot = bucket.data();
assert_eq!(snapshot.len(), target as usize);
let sum: u64 = snapshot.iter().sum();
assert_eq!(sum, total);
}
#[test]
fn test_bucket_write_then_read_mt() {
let bucket = AtomicBucket::new();
let snapshot = bucket.data();
assert_eq!(snapshot.len(), 0);
let res = scope(|s| {
let t1 = s.spawn(|_| {
let mut i = 0;
let mut total = 0;
while i < BLOCK_SIZE as u64 * 100_000 {
bucket.push(i);
total += i;
i += 1;
}
total
});
let t2 = s.spawn(|_| {
let mut i = 0;
let mut total = 0;
while i < BLOCK_SIZE as u64 * 100_000 {
bucket.push(i);
total += i;
i += 1;
}
total
});
let t1_total = t1.join().unwrap();
let t2_total = t2.join().unwrap();
t1_total + t2_total
});
let total = res.unwrap();
let snapshot = bucket.data();
assert_eq!(snapshot.len(), BLOCK_SIZE * 200_000);
let sum = snapshot.iter().sum::<u64>();
assert_eq!(sum, total);
}
#[test]
fn test_clear_and_clear_with() {
let bucket = AtomicBucket::new();
let snapshot = bucket.data();
assert_eq!(snapshot.len(), 0);
let mut i = 0;
let mut total_pushed = 0;
while i < BLOCK_SIZE * 4 {
bucket.push(i);
total_pushed += i;
i += 1;
}
let snapshot = bucket.data();
assert_eq!(snapshot.len(), i);
let mut total_accumulated = 0;
bucket.clear_with(|xs| total_accumulated += xs.iter().sum::<usize>());
assert_eq!(total_pushed, total_accumulated);
let snapshot = bucket.data();
assert_eq!(snapshot.len(), 0);
}
#[test]
fn test_bucket_len_and_next_len() {
let bucket = AtomicBucket::new();
assert!(bucket.is_empty());
let snapshot = bucket.data();
assert_eq!(snapshot.len(), 0);
// Just making sure that `is_empty` holds as we go from
// the first block, to the second block, to exercise the
// `Block::next_len` codepath.
let mut i = 0;
while i < BLOCK_SIZE * 2 {
bucket.push(i);
assert!(!bucket.is_empty());
i += 1;
}
}
}