miden_crypto/merkle/smt/simple/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
use super::{
    super::ValuePath, EmptySubtreeRoots, InnerNode, InnerNodeInfo, LeafIndex, MerkleError,
    MerklePath, NodeIndex, RpoDigest, SparseMerkleTree, Word, EMPTY_WORD, SMT_MAX_DEPTH,
    SMT_MIN_DEPTH,
};
use alloc::collections::{BTreeMap, BTreeSet};

#[cfg(test)]
mod tests;

// SPARSE MERKLE TREE
// ================================================================================================

/// A sparse Merkle tree with 64-bit keys and 4-element leaf values, without compaction.
///
/// The root of the tree is recomputed on each new leaf update.
#[derive(Debug, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct SimpleSmt<const DEPTH: u8> {
    root: RpoDigest,
    leaves: BTreeMap<u64, Word>,
    inner_nodes: BTreeMap<NodeIndex, InnerNode>,
}

impl<const DEPTH: u8> SimpleSmt<DEPTH> {
    // CONSTANTS
    // --------------------------------------------------------------------------------------------

    /// The default value used to compute the hash of empty leaves
    pub const EMPTY_VALUE: Word = <Self as SparseMerkleTree<DEPTH>>::EMPTY_VALUE;

    // CONSTRUCTORS
    // --------------------------------------------------------------------------------------------

    /// Returns a new [SimpleSmt].
    ///
    /// All leaves in the returned tree are set to [ZERO; 4].
    ///
    /// # Errors
    /// Returns an error if DEPTH is 0 or is greater than 64.
    pub fn new() -> Result<Self, MerkleError> {
        // validate the range of the depth.
        if DEPTH < SMT_MIN_DEPTH {
            return Err(MerkleError::DepthTooSmall(DEPTH));
        } else if SMT_MAX_DEPTH < DEPTH {
            return Err(MerkleError::DepthTooBig(DEPTH as u64));
        }

        let root = *EmptySubtreeRoots::entry(DEPTH, 0);

        Ok(Self {
            root,
            leaves: BTreeMap::new(),
            inner_nodes: BTreeMap::new(),
        })
    }

    /// Returns a new [SimpleSmt] instantiated with leaves set as specified by the provided entries.
    ///
    /// All leaves omitted from the entries list are set to [ZERO; 4].
    ///
    /// # Errors
    /// Returns an error if:
    /// - If the depth is 0 or is greater than 64.
    /// - The number of entries exceeds the maximum tree capacity, that is 2^{depth}.
    /// - The provided entries contain multiple values for the same key.
    pub fn with_leaves(
        entries: impl IntoIterator<Item = (u64, Word)>,
    ) -> Result<Self, MerkleError> {
        // create an empty tree
        let mut tree = Self::new()?;

        // compute the max number of entries. We use an upper bound of depth 63 because we consider
        // passing in a vector of size 2^64 infeasible.
        let max_num_entries = 2_usize.pow(DEPTH.min(63).into());

        // This being a sparse data structure, the EMPTY_WORD is not assigned to the `BTreeMap`, so
        // entries with the empty value need additional tracking.
        let mut key_set_to_zero = BTreeSet::new();

        for (idx, (key, value)) in entries.into_iter().enumerate() {
            if idx >= max_num_entries {
                return Err(MerkleError::InvalidNumEntries(max_num_entries));
            }

            let old_value = tree.insert(LeafIndex::<DEPTH>::new(key)?, value);

            if old_value != Self::EMPTY_VALUE || key_set_to_zero.contains(&key) {
                return Err(MerkleError::DuplicateValuesForIndex(key));
            }

            if value == Self::EMPTY_VALUE {
                key_set_to_zero.insert(key);
            };
        }
        Ok(tree)
    }

    /// Wrapper around [`SimpleSmt::with_leaves`] which inserts leaves at contiguous indices
    /// starting at index 0.
    pub fn with_contiguous_leaves(
        entries: impl IntoIterator<Item = Word>,
    ) -> Result<Self, MerkleError> {
        Self::with_leaves(
            entries
                .into_iter()
                .enumerate()
                .map(|(idx, word)| (idx.try_into().expect("tree max depth is 2^8"), word)),
        )
    }

    // PUBLIC ACCESSORS
    // --------------------------------------------------------------------------------------------

    /// Returns the depth of the tree
    pub const fn depth(&self) -> u8 {
        DEPTH
    }

    /// Returns the root of the tree
    pub fn root(&self) -> RpoDigest {
        <Self as SparseMerkleTree<DEPTH>>::root(self)
    }

    /// Returns the number of non-empty leaves in this tree.
    pub fn num_leaves(&self) -> usize {
        self.leaves.len()
    }

    /// Returns the leaf at the specified index.
    pub fn get_leaf(&self, key: &LeafIndex<DEPTH>) -> Word {
        <Self as SparseMerkleTree<DEPTH>>::get_leaf(self, key)
    }

    /// Returns a node at the specified index.
    ///
    /// # Errors
    /// Returns an error if the specified index has depth set to 0 or the depth is greater than
    /// the depth of this Merkle tree.
    pub fn get_node(&self, index: NodeIndex) -> Result<RpoDigest, MerkleError> {
        if index.is_root() {
            Err(MerkleError::DepthTooSmall(index.depth()))
        } else if index.depth() > DEPTH {
            Err(MerkleError::DepthTooBig(index.depth() as u64))
        } else if index.depth() == DEPTH {
            let leaf = self.get_leaf(&LeafIndex::<DEPTH>::try_from(index)?);

            Ok(leaf.into())
        } else {
            Ok(self.get_inner_node(index).hash())
        }
    }

    /// Returns an opening of the leaf associated with `key`. Conceptually, an opening is a Merkle
    /// path to the leaf, as well as the leaf itself.
    pub fn open(&self, key: &LeafIndex<DEPTH>) -> ValuePath {
        <Self as SparseMerkleTree<DEPTH>>::open(self, key)
    }

    // ITERATORS
    // --------------------------------------------------------------------------------------------

    /// Returns an iterator over the leaves of this [SimpleSmt].
    pub fn leaves(&self) -> impl Iterator<Item = (u64, &Word)> {
        self.leaves.iter().map(|(i, w)| (*i, w))
    }

    /// Returns an iterator over the inner nodes of this [SimpleSmt].
    pub fn inner_nodes(&self) -> impl Iterator<Item = InnerNodeInfo> + '_ {
        self.inner_nodes.values().map(|e| InnerNodeInfo {
            value: e.hash(),
            left: e.left,
            right: e.right,
        })
    }

    // STATE MUTATORS
    // --------------------------------------------------------------------------------------------

    /// Inserts a value at the specified key, returning the previous value associated with that key.
    /// Recall that by definition, any key that hasn't been updated is associated with
    /// [`EMPTY_WORD`].
    ///
    /// This also recomputes all hashes between the leaf (associated with the key) and the root,
    /// updating the root itself.
    pub fn insert(&mut self, key: LeafIndex<DEPTH>, value: Word) -> Word {
        <Self as SparseMerkleTree<DEPTH>>::insert(self, key, value)
    }

    /// Inserts a subtree at the specified index. The depth at which the subtree is inserted is
    /// computed as `DEPTH - SUBTREE_DEPTH`.
    ///
    /// Returns the new root.
    pub fn set_subtree<const SUBTREE_DEPTH: u8>(
        &mut self,
        subtree_insertion_index: u64,
        subtree: SimpleSmt<SUBTREE_DEPTH>,
    ) -> Result<RpoDigest, MerkleError> {
        if SUBTREE_DEPTH > DEPTH {
            return Err(MerkleError::InvalidSubtreeDepth {
                subtree_depth: SUBTREE_DEPTH,
                tree_depth: DEPTH,
            });
        }

        // Verify that `subtree_insertion_index` is valid.
        let subtree_root_insertion_depth = DEPTH - SUBTREE_DEPTH;
        let subtree_root_index =
            NodeIndex::new(subtree_root_insertion_depth, subtree_insertion_index)?;

        // add leaves
        // --------------

        // The subtree's leaf indices live in their own context - i.e. a subtree of depth `d`. If we
        // insert the subtree at `subtree_insertion_index = 0`, then the subtree leaf indices are
        // valid as they are. However, consider what happens when we insert at
        // `subtree_insertion_index = 1`. The first leaf of our subtree now will have index `2^d`;
        // you can see it as there's a full subtree sitting on its left. In general, for
        // `subtree_insertion_index = i`, there are `i` subtrees sitting before the subtree we want
        // to insert, so we need to adjust all its leaves by `i * 2^d`.
        let leaf_index_shift: u64 = subtree_insertion_index * 2_u64.pow(SUBTREE_DEPTH.into());
        for (subtree_leaf_idx, leaf_value) in subtree.leaves() {
            let new_leaf_idx = leaf_index_shift + subtree_leaf_idx;
            debug_assert!(new_leaf_idx < 2_u64.pow(DEPTH.into()));

            self.leaves.insert(new_leaf_idx, *leaf_value);
        }

        // add subtree's branch nodes (which includes the root)
        // --------------
        for (branch_idx, branch_node) in subtree.inner_nodes {
            let new_branch_idx = {
                let new_depth = subtree_root_insertion_depth + branch_idx.depth();
                let new_value = subtree_insertion_index * 2_u64.pow(branch_idx.depth().into())
                    + branch_idx.value();

                NodeIndex::new(new_depth, new_value).expect("index guaranteed to be valid")
            };

            self.inner_nodes.insert(new_branch_idx, branch_node);
        }

        // recompute nodes starting from subtree root
        // --------------
        self.recompute_nodes_from_index_to_root(subtree_root_index, subtree.root);

        Ok(self.root)
    }
}

impl<const DEPTH: u8> SparseMerkleTree<DEPTH> for SimpleSmt<DEPTH> {
    type Key = LeafIndex<DEPTH>;
    type Value = Word;
    type Leaf = Word;
    type Opening = ValuePath;

    const EMPTY_VALUE: Self::Value = EMPTY_WORD;

    fn root(&self) -> RpoDigest {
        self.root
    }

    fn set_root(&mut self, root: RpoDigest) {
        self.root = root;
    }

    fn get_inner_node(&self, index: NodeIndex) -> InnerNode {
        self.inner_nodes.get(&index).cloned().unwrap_or_else(|| {
            let node = EmptySubtreeRoots::entry(DEPTH, index.depth() + 1);

            InnerNode { left: *node, right: *node }
        })
    }

    fn insert_inner_node(&mut self, index: NodeIndex, inner_node: InnerNode) {
        self.inner_nodes.insert(index, inner_node);
    }

    fn remove_inner_node(&mut self, index: NodeIndex) {
        let _ = self.inner_nodes.remove(&index);
    }

    fn insert_value(&mut self, key: LeafIndex<DEPTH>, value: Word) -> Option<Word> {
        if value == Self::EMPTY_VALUE {
            self.leaves.remove(&key.value())
        } else {
            self.leaves.insert(key.value(), value)
        }
    }

    fn get_leaf(&self, key: &LeafIndex<DEPTH>) -> Word {
        let leaf_pos = key.value();
        match self.leaves.get(&leaf_pos) {
            Some(word) => *word,
            None => Self::EMPTY_VALUE,
        }
    }

    fn hash_leaf(leaf: &Word) -> RpoDigest {
        // `SimpleSmt` takes the leaf value itself as the hash
        leaf.into()
    }

    fn key_to_leaf_index(key: &LeafIndex<DEPTH>) -> LeafIndex<DEPTH> {
        *key
    }

    fn path_and_leaf_to_opening(path: MerklePath, leaf: Word) -> ValuePath {
        (path, leaf).into()
    }
}