miden_crypto/utils/
kv_map.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
use alloc::{
    boxed::Box,
    collections::{BTreeMap, BTreeSet},
};
use core::cell::RefCell;

// KEY-VALUE MAP TRAIT
// ================================================================================================

/// A trait that defines the interface for a key-value map.
pub trait KvMap<K: Ord + Clone, V: Clone>:
    Extend<(K, V)> + FromIterator<(K, V)> + IntoIterator<Item = (K, V)>
{
    fn get(&self, key: &K) -> Option<&V>;
    fn contains_key(&self, key: &K) -> bool;
    fn len(&self) -> usize;
    fn is_empty(&self) -> bool {
        self.len() == 0
    }
    fn insert(&mut self, key: K, value: V) -> Option<V>;
    fn remove(&mut self, key: &K) -> Option<V>;

    fn iter(&self) -> Box<dyn Iterator<Item = (&K, &V)> + '_>;
}

// BTREE MAP `KvMap` IMPLEMENTATION
// ================================================================================================

impl<K: Ord + Clone, V: Clone> KvMap<K, V> for BTreeMap<K, V> {
    fn get(&self, key: &K) -> Option<&V> {
        self.get(key)
    }

    fn contains_key(&self, key: &K) -> bool {
        self.contains_key(key)
    }

    fn len(&self) -> usize {
        self.len()
    }

    fn insert(&mut self, key: K, value: V) -> Option<V> {
        self.insert(key, value)
    }

    fn remove(&mut self, key: &K) -> Option<V> {
        self.remove(key)
    }

    fn iter(&self) -> Box<dyn Iterator<Item = (&K, &V)> + '_> {
        Box::new(self.iter())
    }
}

// RECORDING MAP
// ================================================================================================

/// A [RecordingMap] that records read requests to the underlying key-value map.
///
/// The data recorder is used to generate a proof for read requests.
///
/// The [RecordingMap] is composed of three parts:
/// - `data`: which contains the current set of key-value pairs in the map.
/// - `updates`: which tracks keys for which values have been changed since the map was
///    instantiated. updates include both insertions, removals and updates of values under existing
///    keys.
/// - `trace`: which contains the key-value pairs from the original data which have been accesses
///   since the map was instantiated.
#[derive(Debug, Default, Clone, Eq, PartialEq)]
pub struct RecordingMap<K, V> {
    data: BTreeMap<K, V>,
    updates: BTreeSet<K>,
    trace: RefCell<BTreeMap<K, V>>,
}

impl<K: Ord + Clone, V: Clone> RecordingMap<K, V> {
    // CONSTRUCTOR
    // --------------------------------------------------------------------------------------------
    /// Returns a new [RecordingMap] instance initialized with the provided key-value pairs.
    /// ([BTreeMap]).
    pub fn new(init: impl IntoIterator<Item = (K, V)>) -> Self {
        RecordingMap {
            data: init.into_iter().collect(),
            updates: BTreeSet::new(),
            trace: RefCell::new(BTreeMap::new()),
        }
    }

    // PUBLIC ACCESSORS
    // --------------------------------------------------------------------------------------------

    pub fn inner(&self) -> &BTreeMap<K, V> {
        &self.data
    }

    // FINALIZER
    // --------------------------------------------------------------------------------------------

    /// Consumes the [RecordingMap] and returns a ([BTreeMap], [BTreeMap]) tuple.  The first
    /// element of the tuple is a map that represents the state of the map at the time `.finalize()`
    /// is called.  The second element contains the key-value pairs from the initial data set that
    /// were read during recording.
    pub fn finalize(self) -> (BTreeMap<K, V>, BTreeMap<K, V>) {
        (self.data, self.trace.take())
    }

    // TEST HELPERS
    // --------------------------------------------------------------------------------------------

    #[cfg(test)]
    pub fn trace_len(&self) -> usize {
        self.trace.borrow().len()
    }

    #[cfg(test)]
    pub fn updates_len(&self) -> usize {
        self.updates.len()
    }
}

impl<K: Ord + Clone, V: Clone> KvMap<K, V> for RecordingMap<K, V> {
    // PUBLIC ACCESSORS
    // --------------------------------------------------------------------------------------------

    /// Returns a reference to the value associated with the given key if the value exists.
    ///
    /// If the key is part of the initial data set, the key access is recorded.
    fn get(&self, key: &K) -> Option<&V> {
        self.data.get(key).inspect(|&value| {
            if !self.updates.contains(key) {
                self.trace.borrow_mut().insert(key.clone(), value.clone());
            }
        })
    }

    /// Returns a boolean to indicate whether the given key exists in the data set.
    ///
    /// If the key is part of the initial data set, the key access is recorded.
    fn contains_key(&self, key: &K) -> bool {
        self.get(key).is_some()
    }

    /// Returns the number of key-value pairs in the data set.
    fn len(&self) -> usize {
        self.data.len()
    }

    // MUTATORS
    // --------------------------------------------------------------------------------------------

    /// Inserts a key-value pair into the data set.
    ///
    /// If the key already exists in the data set, the value is updated and the old value is
    /// returned.
    fn insert(&mut self, key: K, value: V) -> Option<V> {
        let new_update = self.updates.insert(key.clone());
        self.data.insert(key.clone(), value).inspect(|old_value| {
            if new_update {
                self.trace.borrow_mut().insert(key, old_value.clone());
            }
        })
    }

    /// Removes a key-value pair from the data set.
    ///
    /// If the key exists in the data set, the old value is returned.
    fn remove(&mut self, key: &K) -> Option<V> {
        self.data.remove(key).inspect(|old_value| {
            let new_update = self.updates.insert(key.clone());
            if new_update {
                self.trace.borrow_mut().insert(key.clone(), old_value.clone());
            }
        })
    }

    // ITERATION
    // --------------------------------------------------------------------------------------------

    /// Returns an iterator over the key-value pairs in the data set.
    fn iter(&self) -> Box<dyn Iterator<Item = (&K, &V)> + '_> {
        Box::new(self.data.iter())
    }
}

impl<K: Clone + Ord, V: Clone> Extend<(K, V)> for RecordingMap<K, V> {
    fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) {
        iter.into_iter().for_each(move |(k, v)| {
            self.insert(k, v);
        });
    }
}

impl<K: Clone + Ord, V: Clone> FromIterator<(K, V)> for RecordingMap<K, V> {
    fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self {
        Self::new(iter)
    }
}

impl<K: Clone + Ord, V: Clone> IntoIterator for RecordingMap<K, V> {
    type Item = (K, V);
    type IntoIter = alloc::collections::btree_map::IntoIter<K, V>;

    fn into_iter(self) -> Self::IntoIter {
        self.data.into_iter()
    }
}

// TESTS
// ================================================================================================

#[cfg(test)]
mod tests {
    use super::*;

    const ITEMS: [(u64, u64); 5] = [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4)];

    #[test]
    fn test_get_item() {
        // instantiate a recording map
        let map = RecordingMap::new(ITEMS.to_vec());

        // get a few items
        let get_items = [0, 1, 2];
        for key in get_items.iter() {
            map.get(key);
        }

        // convert the map into a proof
        let (_, proof) = map.finalize();

        // check that the proof contains the expected values
        for (key, value) in ITEMS.iter() {
            match get_items.contains(key) {
                true => assert_eq!(proof.get(key), Some(value)),
                false => assert_eq!(proof.get(key), None),
            }
        }
    }

    #[test]
    fn test_contains_key() {
        // instantiate a recording map
        let map = RecordingMap::new(ITEMS.to_vec());

        // check if the map contains a few items
        let get_items = [0, 1, 2];
        for key in get_items.iter() {
            map.contains_key(key);
        }

        // convert the map into a proof
        let (_, proof) = map.finalize();

        // check that the proof contains the expected values
        for (key, _) in ITEMS.iter() {
            match get_items.contains(key) {
                true => assert!(proof.contains_key(key)),
                false => assert!(!proof.contains_key(key)),
            }
        }
    }

    #[test]
    fn test_len() {
        // instantiate a recording map
        let mut map = RecordingMap::new(ITEMS.to_vec());
        // length of the map should be equal to the number of items
        assert_eq!(map.len(), ITEMS.len());

        // inserting entry with key that already exists should not change the length, but it does
        // add entries to the trace and update sets
        map.insert(4, 5);
        assert_eq!(map.len(), ITEMS.len());
        assert_eq!(map.trace_len(), 1);
        assert_eq!(map.updates_len(), 1);

        // inserting entry with new key should increase the length; it should also record the key
        // as an updated key, but the trace length does not change since old values were not touched
        map.insert(5, 5);
        assert_eq!(map.len(), ITEMS.len() + 1);
        assert_eq!(map.trace_len(), 1);
        assert_eq!(map.updates_len(), 2);

        // get some items so that they are saved in the trace; this should record original items
        // in the trace, but should not affect the set of updates
        let get_items = [0, 1, 2];
        for key in get_items.iter() {
            map.contains_key(key);
        }
        assert_eq!(map.trace_len(), 4);
        assert_eq!(map.updates_len(), 2);

        // read the same items again, this should not have any effect on either length, trace, or
        // the set of updates
        let get_items = [0, 1, 2];
        for key in get_items.iter() {
            map.contains_key(key);
        }
        assert_eq!(map.trace_len(), 4);
        assert_eq!(map.updates_len(), 2);

        // read a newly inserted item; this should not affect either length, trace, or the set of
        // updates
        let _val = map.get(&5).unwrap();
        assert_eq!(map.trace_len(), 4);
        assert_eq!(map.updates_len(), 2);

        // update a newly inserted item; this should not affect either length, trace, or the set
        // of updates
        map.insert(5, 11);
        assert_eq!(map.trace_len(), 4);
        assert_eq!(map.updates_len(), 2);

        // Note: The length reported by the proof will be different to the length originally
        // reported by the map.
        let (_, proof) = map.finalize();

        // length of the proof should be equal to get_items + 1. The extra item is the original
        // value at key = 4u64
        assert_eq!(proof.len(), get_items.len() + 1);
    }

    #[test]
    fn test_iter() {
        let mut map = RecordingMap::new(ITEMS.to_vec());
        assert!(map.iter().all(|(x, y)| ITEMS.contains(&(*x, *y))));

        // when inserting entry with key that already exists the iterator should return the new value
        let new_value = 5;
        map.insert(4, new_value);
        assert_eq!(map.iter().count(), ITEMS.len());
        assert!(map.iter().all(|(x, y)| if x == &4 {
            y == &new_value
        } else {
            ITEMS.contains(&(*x, *y))
        }));
    }

    #[test]
    fn test_is_empty() {
        // instantiate an empty recording map
        let empty_map: RecordingMap<u64, u64> = RecordingMap::default();
        assert!(empty_map.is_empty());

        // instantiate a non-empty recording map
        let map = RecordingMap::new(ITEMS.to_vec());
        assert!(!map.is_empty());
    }

    #[test]
    fn test_remove() {
        let mut map = RecordingMap::new(ITEMS.to_vec());

        // remove an item that exists
        let key = 0;
        let value = map.remove(&key).unwrap();
        assert_eq!(value, ITEMS[0].1);
        assert_eq!(map.len(), ITEMS.len() - 1);
        assert_eq!(map.trace_len(), 1);
        assert_eq!(map.updates_len(), 1);

        // add the item back and then remove it again
        let key = 0;
        let value = 0;
        map.insert(key, value);
        let value = map.remove(&key).unwrap();
        assert_eq!(value, 0);
        assert_eq!(map.len(), ITEMS.len() - 1);
        assert_eq!(map.trace_len(), 1);
        assert_eq!(map.updates_len(), 1);

        // remove an item that does not exist
        let key = 100;
        let value = map.remove(&key);
        assert_eq!(value, None);
        assert_eq!(map.len(), ITEMS.len() - 1);
        assert_eq!(map.trace_len(), 1);
        assert_eq!(map.updates_len(), 1);

        // insert a new item and then remove it
        let key = 100;
        let value = 100;
        map.insert(key, value);
        let value = map.remove(&key).unwrap();
        assert_eq!(value, 100);
        assert_eq!(map.len(), ITEMS.len() - 1);
        assert_eq!(map.trace_len(), 1);
        assert_eq!(map.updates_len(), 2);

        // convert the map into a proof
        let (_, proof) = map.finalize();

        // check that the proof contains the expected values
        for (key, value) in ITEMS.iter() {
            match key {
                0 => assert_eq!(proof.get(key), Some(value)),
                _ => assert_eq!(proof.get(key), None),
            }
        }
    }
}