miden_crypto/merkle/mmr/
full.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
//! A fully materialized Merkle mountain range (MMR).
//!
//! A MMR is a forest structure, i.e. it is an ordered set of disjoint rooted trees. The trees are
//! ordered by size, from the most to least number of leaves. Every tree is a perfect binary tree,
//! meaning a tree has all its leaves at the same depth, and every inner node has a branch-factor
//! of 2 with both children set.
//!
//! Additionally the structure only supports adding leaves to the right-most tree, the one with the
//! least number of leaves. The structure preserves the invariant that each tree has different
//! depths, i.e. as part of adding a new element to the forest the trees with same depth are
//! merged, creating a new tree with depth d+1, this process is continued until the property is
//! reestablished.
use alloc::vec::Vec;

use super::{
    super::{InnerNodeInfo, MerklePath},
    bit::TrueBitPositionIterator,
    leaf_to_corresponding_tree, nodes_in_forest, MmrDelta, MmrError, MmrPeaks, MmrProof, Rpo256,
    RpoDigest,
};

// MMR
// ===============================================================================================

/// A fully materialized Merkle Mountain Range, with every tree in the forest and all their
/// elements.
///
/// Since this is a full representation of the MMR, elements are never removed and the MMR will
/// grow roughly `O(2n)` in number of leaf elements.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct Mmr {
    /// Refer to the `forest` method documentation for details of the semantics of this value.
    pub(super) forest: usize,

    /// Contains every element of the forest.
    ///
    /// The trees are in postorder sequential representation. This representation allows for all
    /// the elements of every tree in the forest to be stored in the same sequential buffer. It
    /// also means new elements can be added to the forest, and merging of trees is very cheap with
    /// no need to copy elements.
    pub(super) nodes: Vec<RpoDigest>,
}

impl Default for Mmr {
    fn default() -> Self {
        Self::new()
    }
}

impl Mmr {
    // CONSTRUCTORS
    // ============================================================================================

    /// Constructor for an empty `Mmr`.
    pub fn new() -> Mmr {
        Mmr { forest: 0, nodes: Vec::new() }
    }

    // ACCESSORS
    // ============================================================================================

    /// Returns the MMR forest representation.
    ///
    /// The forest value has the following interpretations:
    /// - its value is the number of elements in the forest
    /// - bit count corresponds to the number of trees in the forest
    /// - each true bit position determines the depth of a tree in the forest
    pub const fn forest(&self) -> usize {
        self.forest
    }

    // FUNCTIONALITY
    // ============================================================================================

    /// Returns an [MmrProof] for the leaf at the specified position.
    ///
    /// Note: The leaf position is the 0-indexed number corresponding to the order the leaves were
    /// added, this corresponds to the MMR size _prior_ to adding the element. So the 1st element
    /// has position 0, the second position 1, and so on.
    ///
    /// # Errors
    /// Returns an error if the specified leaf position is out of bounds for this MMR.
    pub fn open(&self, pos: usize) -> Result<MmrProof, MmrError> {
        self.open_at(pos, self.forest)
    }

    /// Returns an [MmrProof] for the leaf at the specified position using the state of the MMR
    /// at the specified `forest`.
    ///
    /// Note: The leaf position is the 0-indexed number corresponding to the order the leaves were
    /// added, this corresponds to the MMR size _prior_ to adding the element. So the 1st element
    /// has position 0, the second position 1, and so on.
    ///
    /// # Errors
    /// Returns an error if:
    /// - The specified leaf position is out of bounds for this MMR.
    /// - The specified `forest` value is not valid for this MMR.
    pub fn open_at(&self, pos: usize, forest: usize) -> Result<MmrProof, MmrError> {
        // find the target tree responsible for the MMR position
        let tree_bit =
            leaf_to_corresponding_tree(pos, forest).ok_or(MmrError::InvalidPosition(pos))?;

        // isolate the trees before the target
        let forest_before = forest & high_bitmask(tree_bit + 1);
        let index_offset = nodes_in_forest(forest_before);

        // update the value position from global to the target tree
        let relative_pos = pos - forest_before;

        // collect the path and the final index of the target value
        let (_, path) = self.collect_merkle_path_and_value(tree_bit, relative_pos, index_offset);

        Ok(MmrProof {
            forest,
            position: pos,
            merkle_path: MerklePath::new(path),
        })
    }

    /// Returns the leaf value at position `pos`.
    ///
    /// Note: The leaf position is the 0-indexed number corresponding to the order the leaves were
    /// added, this corresponds to the MMR size _prior_ to adding the element. So the 1st element
    /// has position 0, the second position 1, and so on.
    pub fn get(&self, pos: usize) -> Result<RpoDigest, MmrError> {
        // find the target tree responsible for the MMR position
        let tree_bit =
            leaf_to_corresponding_tree(pos, self.forest).ok_or(MmrError::InvalidPosition(pos))?;

        // isolate the trees before the target
        let forest_before = self.forest & high_bitmask(tree_bit + 1);
        let index_offset = nodes_in_forest(forest_before);

        // update the value position from global to the target tree
        let relative_pos = pos - forest_before;

        // collect the path and the final index of the target value
        let (value, _) = self.collect_merkle_path_and_value(tree_bit, relative_pos, index_offset);

        Ok(value)
    }

    /// Adds a new element to the MMR.
    pub fn add(&mut self, el: RpoDigest) {
        // Note: every node is also a tree of size 1, adding an element to the forest creates a new
        // rooted-tree of size 1. This may temporarily break the invariant that every tree in the
        // forest has different sizes, the loop below will eagerly merge trees of same size and
        // restore the invariant.
        self.nodes.push(el);

        let mut left_offset = self.nodes.len().saturating_sub(2);
        let mut right = el;
        let mut left_tree = 1;
        while self.forest & left_tree != 0 {
            right = Rpo256::merge(&[self.nodes[left_offset], right]);
            self.nodes.push(right);

            left_offset = left_offset.saturating_sub(nodes_in_forest(left_tree));
            left_tree <<= 1;
        }

        self.forest += 1;
    }

    /// Returns the current peaks of the MMR.
    pub fn peaks(&self) -> MmrPeaks {
        self.peaks_at(self.forest).expect("failed to get peaks at current forest")
    }

    /// Returns the peaks of the MMR at the state specified by `forest`.
    ///
    /// # Errors
    /// Returns an error if the specified `forest` value is not valid for this MMR.
    pub fn peaks_at(&self, forest: usize) -> Result<MmrPeaks, MmrError> {
        if forest > self.forest {
            return Err(MmrError::InvalidPeaks);
        }

        let peaks: Vec<RpoDigest> = TrueBitPositionIterator::new(forest)
            .rev()
            .map(|bit| nodes_in_forest(1 << bit))
            .scan(0, |offset, el| {
                *offset += el;
                Some(*offset)
            })
            .map(|offset| self.nodes[offset - 1])
            .collect();

        // Safety: the invariant is maintained by the [Mmr]
        let peaks = MmrPeaks::new(forest, peaks).unwrap();

        Ok(peaks)
    }

    /// Compute the required update to `original_forest`.
    ///
    /// The result is a packed sequence of the authentication elements required to update the trees
    /// that have been merged together, followed by the new peaks of the [Mmr].
    pub fn get_delta(&self, from_forest: usize, to_forest: usize) -> Result<MmrDelta, MmrError> {
        if to_forest > self.forest || from_forest > to_forest {
            return Err(MmrError::InvalidPeaks);
        }

        if from_forest == to_forest {
            return Ok(MmrDelta { forest: to_forest, data: Vec::new() });
        }

        let mut result = Vec::new();

        // Find the largest tree in this [Mmr] which is new to `from_forest`.
        let candidate_trees = to_forest ^ from_forest;
        let mut new_high = 1 << candidate_trees.ilog2();

        // Collect authentication nodes used for tree merges
        // ----------------------------------------------------------------------------------------

        // Find the trees from `from_forest` that have been merged into `new_high`.
        let mut merges = from_forest & (new_high - 1);

        // Find the peaks that are common to `from_forest` and this [Mmr]
        let common_trees = from_forest ^ merges;

        if merges != 0 {
            // Skip the smallest trees unknown to `from_forest`.
            let mut target = 1 << merges.trailing_zeros();

            // Collect siblings required to computed the merged tree's peak
            while target < new_high {
                // Computes the offset to the smallest know peak
                // - common_trees: peaks unchanged in the current update, target comes after these.
                // - merges: peaks that have not been merged so far, target comes after these.
                // - target: tree from which to load the sibling. On the first iteration this is a
                //   value known by the partial mmr, on subsequent iterations this value is to be
                //   computed from the known peaks and provided authentication nodes.
                let known = nodes_in_forest(common_trees | merges | target);
                let sibling = nodes_in_forest(target);
                result.push(self.nodes[known + sibling - 1]);

                // Update the target and account for tree merges
                target <<= 1;
                while merges & target != 0 {
                    target <<= 1;
                }
                // Remove the merges done so far
                merges ^= merges & (target - 1);
            }
        } else {
            // The new high tree may not be the result of any merges, if it is smaller than all the
            // trees of `from_forest`.
            new_high = 0;
        }

        // Collect the new [Mmr] peaks
        // ----------------------------------------------------------------------------------------

        let mut new_peaks = to_forest ^ common_trees ^ new_high;
        let old_peaks = to_forest ^ new_peaks;
        let mut offset = nodes_in_forest(old_peaks);
        while new_peaks != 0 {
            let target = 1 << new_peaks.ilog2();
            offset += nodes_in_forest(target);
            result.push(self.nodes[offset - 1]);
            new_peaks ^= target;
        }

        Ok(MmrDelta { forest: to_forest, data: result })
    }

    /// An iterator over inner nodes in the MMR. The order of iteration is unspecified.
    pub fn inner_nodes(&self) -> MmrNodes {
        MmrNodes {
            mmr: self,
            forest: 0,
            last_right: 0,
            index: 0,
        }
    }

    // UTILITIES
    // ============================================================================================

    /// Internal function used to collect the Merkle path of a value.
    ///
    /// The arguments are relative to the target tree. To compute the opening of the second leaf
    /// for a tree with depth 2 in the forest `0b110`:
    ///
    /// - `tree_bit`: Depth of the target tree, e.g. 2 for the smallest tree.
    /// - `relative_pos`: 0-indexed leaf position in the target tree, e.g. 1 for the second leaf.
    /// - `index_offset`: Node count prior to the target tree, e.g. 7 for the tree of depth 3.
    fn collect_merkle_path_and_value(
        &self,
        tree_bit: u32,
        relative_pos: usize,
        index_offset: usize,
    ) -> (RpoDigest, Vec<RpoDigest>) {
        // see documentation of `leaf_to_corresponding_tree` for details
        let tree_depth = (tree_bit + 1) as usize;
        let mut path = Vec::with_capacity(tree_depth);

        // The tree walk below goes from the root to the leaf, compute the root index to start
        let mut forest_target = 1usize << tree_bit;
        let mut index = nodes_in_forest(forest_target) - 1;

        // Loop until the leaf is reached
        while forest_target > 1 {
            // Update the depth of the tree to correspond to a subtree
            forest_target >>= 1;

            // compute the indices of the right and left subtrees based on the post-order
            let right_offset = index - 1;
            let left_offset = right_offset - nodes_in_forest(forest_target);

            let left_or_right = relative_pos & forest_target;
            let sibling = if left_or_right != 0 {
                // going down the right subtree, the right child becomes the new root
                index = right_offset;
                // and the left child is the authentication
                self.nodes[index_offset + left_offset]
            } else {
                index = left_offset;
                self.nodes[index_offset + right_offset]
            };

            path.push(sibling);
        }

        debug_assert!(path.len() == tree_depth - 1);

        // the rest of the codebase has the elements going from leaf to root, adjust it here for
        // easy of use/consistency sake
        path.reverse();

        let value = self.nodes[index_offset + index];
        (value, path)
    }
}

// CONVERSIONS
// ================================================================================================

impl<T> From<T> for Mmr
where
    T: IntoIterator<Item = RpoDigest>,
{
    fn from(values: T) -> Self {
        let mut mmr = Mmr::new();
        for v in values {
            mmr.add(v)
        }
        mmr
    }
}

// ITERATOR
// ===============================================================================================

/// Yields inner nodes of the [Mmr].
pub struct MmrNodes<'a> {
    /// [Mmr] being yielded, when its `forest` value is matched, the iterations is finished.
    mmr: &'a Mmr,
    /// Keeps track of the left nodes yielded so far waiting for a right pair, this matches the
    /// semantics of the [Mmr]'s forest attribute, since that too works as a buffer of left nodes
    /// waiting for a pair to be hashed together.
    forest: usize,
    /// Keeps track of the last right node yielded, after this value is set, the next iteration
    /// will be its parent with its corresponding left node that has been yield already.
    last_right: usize,
    /// The current index in the `nodes` vector.
    index: usize,
}

impl Iterator for MmrNodes<'_> {
    type Item = InnerNodeInfo;

    fn next(&mut self) -> Option<Self::Item> {
        debug_assert!(self.last_right.count_ones() <= 1, "last_right tracks zero or one element");

        // only parent nodes are emitted, remove the single node tree from the forest
        let target = self.mmr.forest & (usize::MAX << 1);

        if self.forest < target {
            if self.last_right == 0 {
                // yield the left leaf
                debug_assert!(self.last_right == 0, "left must be before right");
                self.forest |= 1;
                self.index += 1;

                // yield the right leaf
                debug_assert!((self.forest & 1) == 1, "right must be after left");
                self.last_right |= 1;
                self.index += 1;
            };

            debug_assert!(
                self.forest & self.last_right != 0,
                "parent requires both a left and right",
            );

            // compute the number of nodes in the right tree, this is the offset to the
            // previous left parent
            let right_nodes = nodes_in_forest(self.last_right);
            // the next parent position is one above the position of the pair
            let parent = self.last_right << 1;

            // the left node has been paired and the current parent yielded, removed it from the
            // forest
            self.forest ^= self.last_right;
            if self.forest & parent == 0 {
                // this iteration yielded the left parent node
                debug_assert!(self.forest & 1 == 0, "next iteration yields a left leaf");
                self.last_right = 0;
                self.forest ^= parent;
            } else {
                // the left node of the parent level has been yielded already, this iteration
                // was the right parent. Next iteration yields their parent.
                self.last_right = parent;
            }

            // yields a parent
            let value = self.mmr.nodes[self.index];
            let right = self.mmr.nodes[self.index - 1];
            let left = self.mmr.nodes[self.index - 1 - right_nodes];
            self.index += 1;
            let node = InnerNodeInfo { value, left, right };

            Some(node)
        } else {
            None
        }
    }
}

// UTILITIES
// ===============================================================================================

/// Return a bitmask for the bits including and above the given position.
pub(crate) const fn high_bitmask(bit: u32) -> usize {
    if bit > usize::BITS - 1 {
        0
    } else {
        usize::MAX << bit
    }
}