miden_crypto/merkle/smt/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
use alloc::{collections::BTreeMap, vec::Vec};

use super::{EmptySubtreeRoots, InnerNodeInfo, MerkleError, MerklePath, NodeIndex};
use crate::{
    hash::rpo::{Rpo256, RpoDigest},
    Felt, Word, EMPTY_WORD,
};

mod full;
pub use full::{Smt, SmtLeaf, SmtLeafError, SmtProof, SmtProofError, SMT_DEPTH};

mod simple;
pub use simple::SimpleSmt;

// CONSTANTS
// ================================================================================================

/// Minimum supported depth.
pub const SMT_MIN_DEPTH: u8 = 1;

/// Maximum supported depth.
pub const SMT_MAX_DEPTH: u8 = 64;

// SPARSE MERKLE TREE
// ================================================================================================

/// An abstract description of a sparse Merkle tree.
///
/// A sparse Merkle tree is a key-value map which also supports proving that a given value is indeed
/// stored at a given key in the tree. It is viewed as always being fully populated. If a leaf's
/// value was not explicitly set, then its value is the default value. Typically, the vast majority
/// of leaves will store the default value (hence it is "sparse"), and therefore the internal
/// representation of the tree will only keep track of the leaves that have a different value from
/// the default.
///
/// All leaves sit at the same depth. The deeper the tree, the more leaves it has; but also the
/// longer its proofs are - of exactly `log(depth)` size. A tree cannot have depth 0, since such a
/// tree is just a single value, and is probably a programming mistake.
///
/// Every key maps to one leaf. If there are as many keys as there are leaves, then
/// [Self::Leaf] should be the same type as [Self::Value], as is the case with
/// [crate::merkle::SimpleSmt]. However, if there are more keys than leaves, then [`Self::Leaf`]
/// must accomodate all keys that map to the same leaf.
///
/// [SparseMerkleTree] currently doesn't support optimizations that compress Merkle proofs.
pub(crate) trait SparseMerkleTree<const DEPTH: u8> {
    /// The type for a key
    type Key: Clone + Ord;
    /// The type for a value
    type Value: Clone + PartialEq;
    /// The type for a leaf
    type Leaf: Clone;
    /// The type for an opening (i.e. a "proof") of a leaf
    type Opening;

    /// The default value used to compute the hash of empty leaves
    const EMPTY_VALUE: Self::Value;

    /// The root of the empty tree with provided DEPTH
    const EMPTY_ROOT: RpoDigest;

    // PROVIDED METHODS
    // ---------------------------------------------------------------------------------------------

    /// Returns an opening of the leaf associated with `key`. Conceptually, an opening is a Merkle
    /// path to the leaf, as well as the leaf itself.
    fn open(&self, key: &Self::Key) -> Self::Opening {
        let leaf = self.get_leaf(key);

        let mut index: NodeIndex = {
            let leaf_index: LeafIndex<DEPTH> = Self::key_to_leaf_index(key);
            leaf_index.into()
        };

        let merkle_path = {
            let mut path = Vec::with_capacity(index.depth() as usize);
            for _ in 0..index.depth() {
                let is_right = index.is_value_odd();
                index.move_up();
                let InnerNode { left, right } = self.get_inner_node(index);
                let value = if is_right { left } else { right };
                path.push(value);
            }

            MerklePath::new(path)
        };

        Self::path_and_leaf_to_opening(merkle_path, leaf)
    }

    /// Inserts a value at the specified key, returning the previous value associated with that key.
    /// Recall that by definition, any key that hasn't been updated is associated with
    /// [`Self::EMPTY_VALUE`].
    ///
    /// This also recomputes all hashes between the leaf (associated with the key) and the root,
    /// updating the root itself.
    fn insert(&mut self, key: Self::Key, value: Self::Value) -> Self::Value {
        let old_value = self.insert_value(key.clone(), value.clone()).unwrap_or(Self::EMPTY_VALUE);

        // if the old value and new value are the same, there is nothing to update
        if value == old_value {
            return value;
        }

        let leaf = self.get_leaf(&key);
        let node_index = {
            let leaf_index: LeafIndex<DEPTH> = Self::key_to_leaf_index(&key);
            leaf_index.into()
        };

        self.recompute_nodes_from_index_to_root(node_index, Self::hash_leaf(&leaf));

        old_value
    }

    /// Recomputes the branch nodes (including the root) from `index` all the way to the root.
    /// `node_hash_at_index` is the hash of the node stored at index.
    fn recompute_nodes_from_index_to_root(
        &mut self,
        mut index: NodeIndex,
        node_hash_at_index: RpoDigest,
    ) {
        let mut node_hash = node_hash_at_index;
        for node_depth in (0..index.depth()).rev() {
            let is_right = index.is_value_odd();
            index.move_up();
            let InnerNode { left, right } = self.get_inner_node(index);
            let (left, right) = if is_right {
                (left, node_hash)
            } else {
                (node_hash, right)
            };
            node_hash = Rpo256::merge(&[left, right]);

            if node_hash == *EmptySubtreeRoots::entry(DEPTH, node_depth) {
                // If a subtree is empty, when can remove the inner node, since it's equal to the
                // default value
                self.remove_inner_node(index)
            } else {
                self.insert_inner_node(index, InnerNode { left, right });
            }
        }
        self.set_root(node_hash);
    }

    /// Computes what changes are necessary to insert the specified key-value pairs into this Merkle
    /// tree, allowing for validation before applying those changes.
    ///
    /// This method returns a [`MutationSet`], which contains all the information for inserting
    /// `kv_pairs` into this Merkle tree already calculated, including the new root hash, which can
    /// be queried with [`MutationSet::root()`]. Once a mutation set is returned,
    /// [`SparseMerkleTree::apply_mutations()`] can be called in order to commit these changes to
    /// the Merkle tree, or [`drop()`] to discard them.
    fn compute_mutations(
        &self,
        kv_pairs: impl IntoIterator<Item = (Self::Key, Self::Value)>,
    ) -> MutationSet<DEPTH, Self::Key, Self::Value> {
        use NodeMutation::*;

        let mut new_root = self.root();
        let mut new_pairs: BTreeMap<Self::Key, Self::Value> = Default::default();
        let mut node_mutations: BTreeMap<NodeIndex, NodeMutation> = Default::default();

        for (key, value) in kv_pairs {
            // If the old value and the new value are the same, there is nothing to update.
            // For the unusual case that kv_pairs has multiple values at the same key, we'll have
            // to check the key-value pairs we've already seen to get the "effective" old value.
            let old_value = new_pairs.get(&key).cloned().unwrap_or_else(|| self.get_value(&key));
            if value == old_value {
                continue;
            }

            let leaf_index = Self::key_to_leaf_index(&key);
            let mut node_index = NodeIndex::from(leaf_index);

            // We need the current leaf's hash to calculate the new leaf, but in the rare case that
            // `kv_pairs` has multiple pairs that go into the same leaf, then those pairs are also
            // part of the "current leaf".
            let old_leaf = {
                let pairs_at_index = new_pairs
                    .iter()
                    .filter(|&(new_key, _)| Self::key_to_leaf_index(new_key) == leaf_index);

                pairs_at_index.fold(self.get_leaf(&key), |acc, (k, v)| {
                    // Most of the time `pairs_at_index` should only contain a single entry (or
                    // none at all), as multi-leaves should be really rare.
                    let existing_leaf = acc.clone();
                    self.construct_prospective_leaf(existing_leaf, k, v)
                })
            };

            let new_leaf = self.construct_prospective_leaf(old_leaf, &key, &value);

            let mut new_child_hash = Self::hash_leaf(&new_leaf);

            for node_depth in (0..node_index.depth()).rev() {
                // Whether the node we're replacing is the right child or the left child.
                let is_right = node_index.is_value_odd();
                node_index.move_up();

                let old_node = node_mutations
                    .get(&node_index)
                    .map(|mutation| match mutation {
                        Addition(node) => node.clone(),
                        Removal => EmptySubtreeRoots::get_inner_node(DEPTH, node_depth),
                    })
                    .unwrap_or_else(|| self.get_inner_node(node_index));

                let new_node = if is_right {
                    InnerNode {
                        left: old_node.left,
                        right: new_child_hash,
                    }
                } else {
                    InnerNode {
                        left: new_child_hash,
                        right: old_node.right,
                    }
                };

                // The next iteration will operate on this new node's hash.
                new_child_hash = new_node.hash();

                let &equivalent_empty_hash = EmptySubtreeRoots::entry(DEPTH, node_depth);
                let is_removal = new_child_hash == equivalent_empty_hash;
                let new_entry = if is_removal { Removal } else { Addition(new_node) };
                node_mutations.insert(node_index, new_entry);
            }

            // Once we're at depth 0, the last node we made is the new root.
            new_root = new_child_hash;
            // And then we're done with this pair; on to the next one.
            new_pairs.insert(key, value);
        }

        MutationSet {
            old_root: self.root(),
            new_root,
            node_mutations,
            new_pairs,
        }
    }

    /// Apply the prospective mutations computed with [`SparseMerkleTree::compute_mutations()`] to
    /// this tree.
    ///
    /// # Errors
    /// If `mutations` was computed on a tree with a different root than this one, returns
    /// [`MerkleError::ConflictingRoots`] with a two-item [`Vec`]. The first item is the root hash
    /// the `mutations` were computed against, and the second item is the actual current root of
    /// this tree.
    fn apply_mutations(
        &mut self,
        mutations: MutationSet<DEPTH, Self::Key, Self::Value>,
    ) -> Result<(), MerkleError>
    where
        Self: Sized,
    {
        use NodeMutation::*;
        let MutationSet {
            old_root,
            node_mutations,
            new_pairs,
            new_root,
        } = mutations;

        // Guard against accidentally trying to apply mutations that were computed against a
        // different tree, including a stale version of this tree.
        if old_root != self.root() {
            return Err(MerkleError::ConflictingRoots(vec![old_root, self.root()]));
        }

        for (index, mutation) in node_mutations {
            match mutation {
                Removal => self.remove_inner_node(index),
                Addition(node) => self.insert_inner_node(index, node),
            }
        }

        for (key, value) in new_pairs {
            self.insert_value(key, value);
        }

        self.set_root(new_root);

        Ok(())
    }

    // REQUIRED METHODS
    // ---------------------------------------------------------------------------------------------

    /// The root of the tree
    fn root(&self) -> RpoDigest;

    /// Sets the root of the tree
    fn set_root(&mut self, root: RpoDigest);

    /// Retrieves an inner node at the given index
    fn get_inner_node(&self, index: NodeIndex) -> InnerNode;

    /// Inserts an inner node at the given index
    fn insert_inner_node(&mut self, index: NodeIndex, inner_node: InnerNode);

    /// Removes an inner node at the given index
    fn remove_inner_node(&mut self, index: NodeIndex);

    /// Inserts a leaf node, and returns the value at the key if already exists
    fn insert_value(&mut self, key: Self::Key, value: Self::Value) -> Option<Self::Value>;

    /// Returns the value at the specified key. Recall that by definition, any key that hasn't been
    /// updated is associated with [`Self::EMPTY_VALUE`].
    fn get_value(&self, key: &Self::Key) -> Self::Value;

    /// Returns the leaf at the specified index.
    fn get_leaf(&self, key: &Self::Key) -> Self::Leaf;

    /// Returns the hash of a leaf
    fn hash_leaf(leaf: &Self::Leaf) -> RpoDigest;

    /// Returns what a leaf would look like if a key-value pair were inserted into the tree, without
    /// mutating the tree itself. The existing leaf can be empty.
    ///
    /// To get a prospective leaf based on the current state of the tree, use `self.get_leaf(key)`
    /// as the argument for `existing_leaf`. The return value from this function can be chained back
    /// into this function as the first argument to continue making prospective changes.
    ///
    /// # Invariants
    /// Because this method is for a prospective key-value insertion into a specific leaf,
    /// `existing_leaf` must have the same leaf index as `key` (as determined by
    /// [`SparseMerkleTree::key_to_leaf_index()`]), or the result will be meaningless.
    fn construct_prospective_leaf(
        &self,
        existing_leaf: Self::Leaf,
        key: &Self::Key,
        value: &Self::Value,
    ) -> Self::Leaf;

    /// Maps a key to a leaf index
    fn key_to_leaf_index(key: &Self::Key) -> LeafIndex<DEPTH>;

    /// Maps a (MerklePath, Self::Leaf) to an opening.
    ///
    /// The length `path` is guaranteed to be equal to `DEPTH`
    fn path_and_leaf_to_opening(path: MerklePath, leaf: Self::Leaf) -> Self::Opening;
}

// INNER NODE
// ================================================================================================

#[derive(Debug, Default, Clone, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub(crate) struct InnerNode {
    pub left: RpoDigest,
    pub right: RpoDigest,
}

impl InnerNode {
    pub fn hash(&self) -> RpoDigest {
        Rpo256::merge(&[self.left, self.right])
    }
}

// LEAF INDEX
// ================================================================================================

/// The index of a leaf, at a depth known at compile-time.
#[derive(Debug, Default, Copy, Clone, Eq, PartialEq, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize, serde::Serialize))]
pub struct LeafIndex<const DEPTH: u8> {
    index: NodeIndex,
}

impl<const DEPTH: u8> LeafIndex<DEPTH> {
    pub fn new(value: u64) -> Result<Self, MerkleError> {
        if DEPTH < SMT_MIN_DEPTH {
            return Err(MerkleError::DepthTooSmall(DEPTH));
        }

        Ok(LeafIndex { index: NodeIndex::new(DEPTH, value)? })
    }

    pub fn value(&self) -> u64 {
        self.index.value()
    }
}

impl LeafIndex<SMT_MAX_DEPTH> {
    pub const fn new_max_depth(value: u64) -> Self {
        LeafIndex {
            index: NodeIndex::new_unchecked(SMT_MAX_DEPTH, value),
        }
    }
}

impl<const DEPTH: u8> From<LeafIndex<DEPTH>> for NodeIndex {
    fn from(value: LeafIndex<DEPTH>) -> Self {
        value.index
    }
}

impl<const DEPTH: u8> TryFrom<NodeIndex> for LeafIndex<DEPTH> {
    type Error = MerkleError;

    fn try_from(node_index: NodeIndex) -> Result<Self, Self::Error> {
        if node_index.depth() != DEPTH {
            return Err(MerkleError::InvalidDepth {
                expected: DEPTH,
                provided: node_index.depth(),
            });
        }

        Self::new(node_index.value())
    }
}

// MUTATIONS
// ================================================================================================

/// A change to an inner node of a [`SparseMerkleTree`] that hasn't yet been applied.
/// [`MutationSet`] stores this type in relation to a [`NodeIndex`] to keep track of what changes
/// need to occur at which node indices.
#[derive(Debug, Clone, PartialEq, Eq)]
pub(crate) enum NodeMutation {
    /// Corresponds to [`SparseMerkleTree::remove_inner_node()`].
    Removal,
    /// Corresponds to [`SparseMerkleTree::insert_inner_node()`].
    Addition(InnerNode),
}

/// Represents a group of prospective mutations to a `SparseMerkleTree`, created by
/// `SparseMerkleTree::compute_mutations()`, and that can be applied with
/// `SparseMerkleTree::apply_mutations()`.
#[derive(Debug, Clone, PartialEq, Eq, Default)]
pub struct MutationSet<const DEPTH: u8, K, V> {
    /// The root of the Merkle tree this MutationSet is for, recorded at the time
    /// [`SparseMerkleTree::compute_mutations()`] was called. Exists to guard against applying
    /// mutations to the wrong tree or applying stale mutations to a tree that has since changed.
    old_root: RpoDigest,
    /// The set of nodes that need to be removed or added. The "effective" node at an index is the
    /// Merkle tree's existing node at that index, with the [`NodeMutation`] in this map at that
    /// index overlayed, if any. Each [`NodeMutation::Addition`] corresponds to a
    /// [`SparseMerkleTree::insert_inner_node()`] call, and each [`NodeMutation::Removal`]
    /// corresponds to a [`SparseMerkleTree::remove_inner_node()`] call.
    node_mutations: BTreeMap<NodeIndex, NodeMutation>,
    /// The set of top-level key-value pairs we're prospectively adding to the tree, including
    /// adding empty values. The "effective" value for a key is the value in this BTreeMap, falling
    /// back to the existing value in the Merkle tree. Each entry corresponds to a
    /// [`SparseMerkleTree::insert_value()`] call.
    new_pairs: BTreeMap<K, V>,
    /// The calculated root for the Merkle tree, given these mutations. Publicly retrievable with
    /// [`MutationSet::root()`]. Corresponds to a [`SparseMerkleTree::set_root()`]. call.
    new_root: RpoDigest,
}

impl<const DEPTH: u8, K, V> MutationSet<DEPTH, K, V> {
    /// Queries the root that was calculated during `SparseMerkleTree::compute_mutations()`. See
    /// that method for more information.
    pub fn root(&self) -> RpoDigest {
        self.new_root
    }
}