1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
use super::{Cache, Weigher};
use crate::common::builder_utils;

use std::{
    collections::hash_map::RandomState,
    hash::{BuildHasher, Hash},
    marker::PhantomData,
    time::Duration,
};

/// Builds a [`Cache`][cache-struct] with various configuration knobs.
///
/// [cache-struct]: ./struct.Cache.html
///
/// # Examples
///
/// ```rust
/// use mini_moka::unsync::Cache;
/// use std::time::Duration;
///
/// let mut cache = Cache::builder()
///     // Max 10,000 elements
///     .max_capacity(10_000)
///     // Time to live (TTL): 30 minutes
///     .time_to_live(Duration::from_secs(30 * 60))
///     // Time to idle (TTI):  5 minutes
///     .time_to_idle(Duration::from_secs( 5 * 60))
///     // Create the cache.
///     .build();
///
/// // This entry will expire after 5 minutes (TTI) if there is no get().
/// cache.insert(0, "zero");
///
/// // This get() will extend the entry life for another 5 minutes.
/// cache.get(&0);
///
/// // Even though we keep calling get(), the entry will expire
/// // after 30 minutes (TTL) from the insert().
/// ```
///
#[must_use]
pub struct CacheBuilder<K, V, C> {
    max_capacity: Option<u64>,
    initial_capacity: Option<usize>,
    weigher: Option<Weigher<K, V>>,
    time_to_live: Option<Duration>,
    time_to_idle: Option<Duration>,
    cache_type: PhantomData<C>,
}

impl<K, V> Default for CacheBuilder<K, V, Cache<K, V, RandomState>>
where
    K: Eq + Hash,
{
    fn default() -> Self {
        Self {
            max_capacity: None,
            initial_capacity: None,
            weigher: None,
            time_to_live: None,
            time_to_idle: None,
            cache_type: Default::default(),
        }
    }
}

impl<K, V> CacheBuilder<K, V, Cache<K, V, RandomState>>
where
    K: Eq + Hash,
{
    /// Construct a new `CacheBuilder` that will be used to build a `Cache` holding
    /// up to `max_capacity` entries.
    pub fn new(max_capacity: u64) -> Self {
        Self {
            max_capacity: Some(max_capacity),
            ..Default::default()
        }
    }

    /// Builds a `Cache<K, V>`.
    ///
    /// # Panics
    ///
    /// Panics if configured with either `time_to_live` or `time_to_idle` higher than
    /// 1000 years. This is done to protect against overflow when computing key
    /// expiration.
    pub fn build(self) -> Cache<K, V, RandomState> {
        let build_hasher = RandomState::default();
        builder_utils::ensure_expirations_or_panic(self.time_to_live, self.time_to_idle);
        Cache::with_everything(
            self.max_capacity,
            self.initial_capacity,
            build_hasher,
            self.weigher,
            self.time_to_live,
            self.time_to_idle,
        )
    }

    /// Builds a `Cache<K, V, S>`, with the given `hasher`.
    ///
    /// # Panics
    ///
    /// Panics if configured with either `time_to_live` or `time_to_idle` higher than
    /// 1000 years. This is done to protect against overflow when computing key
    /// expiration.
    pub fn build_with_hasher<S>(self, hasher: S) -> Cache<K, V, S>
    where
        S: BuildHasher + Clone,
    {
        builder_utils::ensure_expirations_or_panic(self.time_to_live, self.time_to_idle);
        Cache::with_everything(
            self.max_capacity,
            self.initial_capacity,
            hasher,
            self.weigher,
            self.time_to_live,
            self.time_to_idle,
        )
    }
}

impl<K, V, C> CacheBuilder<K, V, C> {
    /// Sets the max capacity of the cache.
    pub fn max_capacity(self, max_capacity: u64) -> Self {
        Self {
            max_capacity: Some(max_capacity),
            ..self
        }
    }

    /// Sets the initial capacity (number of entries) of the cache.
    pub fn initial_capacity(self, number_of_entries: usize) -> Self {
        Self {
            initial_capacity: Some(number_of_entries),
            ..self
        }
    }

    /// Sets the weigher closure of the cache.
    ///
    /// The closure should take `&K` and `&V` as the arguments and returns a `u32`
    /// representing the relative size of the entry.
    pub fn weigher(self, weigher: impl FnMut(&K, &V) -> u32 + 'static) -> Self {
        Self {
            weigher: Some(Box::new(weigher)),
            ..self
        }
    }

    /// Sets the time to live of the cache.
    ///
    /// A cached entry will be expired after the specified duration past from
    /// `insert`.
    ///
    /// # Panics
    ///
    /// `CacheBuilder::build*` methods will panic if the given `duration` is longer
    /// than 1000 years. This is done to protect against overflow when computing key
    /// expiration.
    pub fn time_to_live(self, duration: Duration) -> Self {
        Self {
            time_to_live: Some(duration),
            ..self
        }
    }

    /// Sets the time to idle of the cache.
    ///
    /// A cached entry will be expired after the specified duration past from `get`
    /// or `insert`.
    ///
    /// # Panics
    ///
    /// `CacheBuilder::build*` methods will panic if the given `duration` is longer
    /// than 1000 years. This is done to protect against overflow when computing key
    /// expiration.
    pub fn time_to_idle(self, duration: Duration) -> Self {
        Self {
            time_to_idle: Some(duration),
            ..self
        }
    }
}

#[cfg(test)]
mod tests {
    use super::CacheBuilder;

    use std::time::Duration;

    #[test]
    fn build_cache() {
        // Cache<char, String>
        let mut cache = CacheBuilder::new(100).build();
        let policy = cache.policy();

        assert_eq!(policy.max_capacity(), Some(100));
        assert_eq!(policy.time_to_live(), None);
        assert_eq!(policy.time_to_idle(), None);

        cache.insert('a', "Alice");
        assert_eq!(cache.get(&'a'), Some(&"Alice"));

        let mut cache = CacheBuilder::new(100)
            .time_to_live(Duration::from_secs(45 * 60))
            .time_to_idle(Duration::from_secs(15 * 60))
            .build();
        let policy = cache.policy();

        assert_eq!(policy.max_capacity(), Some(100));
        assert_eq!(policy.time_to_live(), Some(Duration::from_secs(45 * 60)));
        assert_eq!(policy.time_to_idle(), Some(Duration::from_secs(15 * 60)));

        cache.insert('a', "Alice");
        assert_eq!(cache.get(&'a'), Some(&"Alice"));
    }

    #[test]
    #[should_panic(expected = "time_to_live is longer than 1000 years")]
    fn build_cache_too_long_ttl() {
        let thousand_years_secs: u64 = 1000 * 365 * 24 * 3600;
        let builder: CacheBuilder<char, String, _> = CacheBuilder::new(100);
        let duration = Duration::from_secs(thousand_years_secs);
        builder
            .time_to_live(duration + Duration::from_secs(1))
            .build();
    }

    #[test]
    #[should_panic(expected = "time_to_idle is longer than 1000 years")]
    fn build_cache_too_long_tti() {
        let thousand_years_secs: u64 = 1000 * 365 * 24 * 3600;
        let builder: CacheBuilder<char, String, _> = CacheBuilder::new(100);
        let duration = Duration::from_secs(thousand_years_secs);
        builder
            .time_to_idle(duration + Duration::from_secs(1))
            .build();
    }
}