1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
//! Procedural macros to derive minicbor's `Encode` and `Decode` traits. //! //! Deriving is supported for `struct`s and `enum`s. The encoding is optimised //! for forward and backward compatibility and the overall approach is //! influenced by [Google's Protocol Buffers][1]. //! //! The goal is that ideally a change to a type still allows older software, //! which is unaware of the changes, to decode values of the changed type //! (forward compatibility) and newer software, to decode values of types //! encoded by older software, which do not include the changes made to the //! type (backward compatibility). //! //! In order to reach this goal, the encoding has the following characteristics: //! //! 1. The encoding does not contain any names, i.e. no field names, type names //! or variant names. Instead, every field and every constructor needs to be //! annotated with an (unsigned) index number, e.g. `#[n(1)]`. //! //! 2. Unknown fields are ignored during decoding. //! //! 3. Optional types default to `None` if their value is not present during //! decoding. //! //! 4. Optional enums default to `None` if an unknown variant is encountered //! during decoding. //! //! Item **1** ensures that names can be changed freely without compatibility //! concerns. Item **2** ensures that new fields do not affect older software. //! Item **3** ensures that newer software can stop producing optional values. //! Item **4** ensures that enums can get new variants that older software is //! not aware of. By "fields" we mean the elements of structs and tuple structs //! as well as enum structs and enum tuples. In addition, it is a compatible //! change to turn a unit variant into a struct or tuple variant if all fields //! are optional. //! //! From the above it should be obvious that *non-optional fields need to be //! present forever*, so they should only be part of a type after careful //! consideration. //! //! It should be emphasised that an `enum` itself can not be changed in a //! compatible way. An unknown variant causes an error. It is only when they //! are declared as an optional field type that unknown variants of an enum //! are mapped to `None`. In other words, *only structs can be used as //! top-level types in a forward and backward compatible way, enums can not.* //! //! # Example //! //! ``` //! use minicbor::{Encode, Decode}; //! //! #[derive(Encode, Decode)] //! struct Point { //! #[n(0)] x: f64, //! #[n(1)] y: f64 //! } //! //! #[derive(Encode, Decode)] //! struct ConvexHull { //! #[n(0)] left: Point, //! #[n(1)] right: Point, //! #[n(2)] points: Vec<Point>, //! #[n(3)] state: Option<State> //! } //! //! #[derive(Encode, Decode)] //! enum State { //! #[n(0)] Start, //! #[n(1)] Search { #[n(0)] info: u64 } //! } //! ``` //! //! In this example the following changes would be compatible in both //! directions: //! //! - Renaming every identifier. //! //! - Adding optional fields to `Point`, `ConvexHull`, `State::Start` or //! `State::Search`. //! //! - Adding more variants to `State` *iff* `State` is only decoded as part of //! `ConvexHull`. Direct decoding of `State` would produce an `UnknownVariant` //! error for those new variants. //! //! [1]: https://developers.google.com/protocol-buffers/ //! //! # Attributes and borrowing //! //! Each field and variant needs to be annotated with an index number, which is //! used instead of the name, using either **`n`** or **`b`** as attribute names. //! For the encoding it makes no difference which one to choose. For decoding, //! `b` indicates that the value borrows from the decoding input, whereas `n` //! produces non-borrowed values (except for implicit borrows). //! //! ## Encoding format //! //! The actual CBOR encoding to use can be selected by attaching either the //! **`#[cbor(array)]`** or **`#[cbor(map)]`** attribute to structs, enums or //! enum variants. By default `#[cbor(array)]` is implied. The attribute //! attached to an enum applies to all its variants but can be overriden per //! variant with another such attribute. //! //! ## Implicit borrowing //! //! The following types implicitly borrow from the decoding input, which means //! their lifetimes are constrained by the input lifetime: //! //! - `&'_ str` //! - `&'_ minicbor::bytes::ByteSlice` //! - `Option<&'_ str>` //! - `Option<&'_ minicbor::bytes::ByteSlice>` //! //! ### What about `&[u8]`? //! //! `&[u8]` is a special case of `&[T]`. The lack of trait impl specialisation //! in Rust makes it difficult to provide optimised support for byte slices. //! The generic `[T]` impl of `Encode` produces an array of `T`s. To specifically //! encode to and decode from CBOR bytes, the types `ByteSlice` and `ByteVec` are //! provided by minicbor. In addition, the attributes `encode_with`, `decode_with` //! and `with` can be used with `&[u8]` when deriving, e.g. //! //! ``` //! use minicbor::{Encode, Decode}; //! //! #[derive(Encode, Decode)] //! struct Foo<'a> { //! #[n(0)] //! #[cbor(with = "minicbor::bytes")] //! field0: &'a [u8], //! //! #[n(1)] //! #[cbor(encode_with = "minicbor::bytes::encode")] //! #[cbor(decode_with = "minicbor::bytes::decode")] //! field1: &'a [u8], //! //! #[n(2)] //! #[cbor(with = "minicbor::bytes")] //! field2: Option<&'a [u8]>, //! //! #[n(3)] //! #[cbor(with = "minicbor::bytes")] //! field3: Vec<u8> //! } //! ``` //! //! ## Explicit borrowing //! //! If a type is annotated with **`#[b(...)]`**, all its lifetimes will be //! constrained to the input lifetime. //! //! If the type is a `std::borrow::Cow<'_, str>` or //! `std::borrow::Cow<'_, minicbor::bytes::ByteSlice>` type, the generated code //! will decode the inner type and construct a `Cow::Borrowed` variant, contrary //! to the `Cow` impl of `Decode` which produces owned values. //! //! ## Other attributes //! //! ### `encode_with`, `decode_with` and `with` //! //! Fields in structs and enum variants may be annotated with //! **`#[cbor(encode_with = "path")]`**, **`#[cbor(decode_with = "path")]`** or //! **`#[cbor(with = "module-path")]`** where `path` is the full path to a //! function which is used instead of `Encode::encode` to encode the field or //! `Decode::decode` to decode the field respectively. The types of these //! functions must be equivalent to `Encode::encode` or `Decode::decode`. //! The `with` attribute combines the other two with `module-path` denoting the //! full path to a module with two functions `encode` and `decode` as members, //! which are used for encoding and decoding of the field. These three //! attributes can either override an existing `Encode` or `Decode` impl or be //! used for types which do not implement those traits at all. //! //! ### `transparent` //! //! A **`#[cbor(transparent)]`** attribute can be attached to structs with //! exactly one field (aka newtypes). If present, the generated `Encode` and //! `Decode` impls will just forward the `encode`/`decode` calls to the inner //! type, i.e. the resulting CBOR representation will be identical to the one //! of the inner type. //! //! ## `index_only` //! //! Enumerations which do not contain fields may have the //! **`#[cbor(index_only)]`** attribute attached to them. This changes the //! encoding to encode only the variant index (cf. section //! [CBOR encoding](#cbor-encoding) for details). //! //! # CBOR encoding //! //! The CBOR values produced by a derived `Encode` implementation are of the //! following formats. //! //! ## Structs //! //! ### Array encoding //! //! By default or if a struct has the **`#[cbor(array)]`** attribute, it will //! be represented as a CBOR array. Its index numbers are represened by the //! position of the field value in this array. Any gaps between index numbers //! are filled with CBOR NULL values and `Option`s which are `None` likewise //! end up as NULLs in this array. //! //! ```text //! <<struct-as-array encoding>> = //! `array(n)` //! item_0 //! item_1 //! ... //! item_n //! ``` //! //! ### Map encoding //! //! If a struct has the **`#[cbor(map)]`** attribute, then it will be //! represented as a CBOR map with keys corresponding to the numeric index //! value: //! //! ```text //! <<struct-as-map encoding>> = //! `map(n)` //! `0` item_0 //! `1` item_1 //! ... //! n item_n //! ``` //! //! Optional fields whose value is `None` are not encoded. //! //! ## Enums //! //! Unless the `#[cbor(index_only)]` attribute is used for enums without any //! fields, each enum variant is encoded as a two-element array. The first //! element is the variant index and the second the actual variant value. //! Otherwise, if enums do not have fields and the `index_only` attribute is //! present, only the variant index is encoded: //! //! ```text //! <<enum encoding>> = //! | `array(2)` n <<struct-as-array encoding>> ; if #[cbor(array)] //! | `array(2)` n <<struct-as-map encoding>> ; if #[cbor(map)] //! | n ; if #[cbor(index_only)] //! ``` //! //! ## Which encoding to use? //! //! The map encoding needs to represent the indexes explicitly in the encoding //! which costs at least one extra byte per field value, whereas the array //! encoding does not need to encode the indexes. On the other hand, absent //! values, i.e. `None`s and gaps between indexes are not encoded with maps but //! need to be encoded explicitly with arrays as NULLs which need one byte each. //! Which encoding to choose depends therefore on the nature of the type that //! should be encoded: //! //! - *Dense types* are types which contain only few `Option`s or their `Option`s //! are assumed to be `Some`s usually. They are best encoded as arrays. //! //! - *Sparse types* are types with many `Option`s and their `Option`s are usually //! `None`s. They are best encoded as maps. //! //! When selecting the encoding, future changes to the type should be considered //! as they may turn a dense type into a sparse one over time. This also applies //! to [`index_only`](#index_only) which should be used only with enums which //! are not expected to ever have fields in their variants. extern crate proc_macro; mod decode; mod encode; use quote::{ToTokens, TokenStreamExt}; use proc_macro2::Span; use syn::spanned::Spanned; use std::collections::HashSet; /// Derive the `minicbor::Decode` trait for a struct or enum. /// /// See the [crate] documentation for details. #[proc_macro_derive(Decode, attributes(n, b, cbor))] pub fn derive_decode(input: proc_macro::TokenStream) -> proc_macro::TokenStream { decode::derive_from(input) } /// Derive the `minicbor::Encode` trait for a struct or enum. /// /// See the [crate] documentation for details. #[proc_macro_derive(Encode, attributes(n, b, cbor))] pub fn derive_encode(input: proc_macro::TokenStream) -> proc_macro::TokenStream { encode::derive_from(input) } // Helpers //////////////////////////////////////////////////////////////////// /// Check if the given type is an `Option` whose inner type matches the predicate. fn is_option(ty: &syn::Type, pred: impl FnOnce(&syn::Type) -> bool) -> bool { if let syn::Type::Path(t) = ty { if let Some(s) = t.path.segments.last() { if s.ident == "Option" { if let syn::PathArguments::AngleBracketed(b) = &s.arguments { if b.args.len() == 1 { if let syn::GenericArgument::Type(ty) = &b.args[0] { return pred(ty) } } } } } } false } /// Check if the given type is a `Cow` whose inner type matches the predicate. fn is_cow(ty: &syn::Type, pred: impl FnOnce(&syn::Type) -> bool) -> bool { if let syn::Type::Path(t) = ty { if let Some(s) = t.path.segments.last() { if s.ident == "Cow" { if let syn::PathArguments::AngleBracketed(b) = &s.arguments { if b.args.len() == 2 { if let syn::GenericArgument::Lifetime(_) = &b.args[0] { if let syn::GenericArgument::Type(ty) = &b.args[1] { return pred(ty) } } } } } } } false } /// Check if the given type is a `&str`. fn is_str(ty: &syn::Type) -> bool { if let syn::Type::Path(t) = ty { t.qself.is_none() && t.path.segments.len() == 1 && t.path.segments[0].ident == "str" } else { false } } /// Check if the given type is a `&[u8]`. fn is_byte_slice(ty: &syn::Type) -> bool { if let syn::Type::Path(t) = ty { return t.qself.is_none() && ((t.path.segments.len() == 1 && t.path.segments[0].ident == "ByteSlice") || (t.path.segments.len() == 2 && t.path.segments[0].ident == "bytes" && t.path.segments[1].ident == "ByteSlice") || (t.path.segments.len() == 3 && t.path.segments[0].ident == "minicbor" && t.path.segments[1].ident == "bytes" && t.path.segments[2].ident == "ByteSlice")) } if let syn::Type::Slice(t) = ty { if let syn::Type::Path(t) = &*t.elem { t.qself.is_none() && t.path.segments.len() == 1 && t.path.segments[0].ident == "u8" } else { false } } else { false } } /// Get the lifetime of the given type if it is an `Option` whose inner type matches the predicate. fn option_lifetime(ty: &syn::Type, pred: impl FnOnce(&syn::Type) -> bool) -> Option<syn::Lifetime> { if let syn::Type::Path(t) = ty { if let Some(s) = t.path.segments.last() { if s.ident == "Option" { if let syn::PathArguments::AngleBracketed(b) = &s.arguments { if b.args.len() == 1 { if let syn::GenericArgument::Type(syn::Type::Reference(ty)) = &b.args[0] { if pred(&*ty.elem) { return ty.lifetime.clone() } } } } } } } None } /// Get all lifetimes of a type. fn get_lifetimes(ty: &syn::Type, set: &mut HashSet<syn::Lifetime>) { match ty { syn::Type::Array(t) => get_lifetimes(&t.elem, set), syn::Type::Slice(t) => get_lifetimes(&t.elem, set), syn::Type::Paren(t) => get_lifetimes(&t.elem, set), syn::Type::Group(t) => get_lifetimes(&t.elem, set), syn::Type::Ptr(t) => get_lifetimes(&t.elem, set), syn::Type::Reference(t) => { if let Some(l) = &t.lifetime { set.insert(l.clone()); } get_lifetimes(&t.elem, set) } syn::Type::Tuple(t) => { for t in &t.elems { get_lifetimes(t, set) } } syn::Type::Path(t) => { for s in &t.path.segments { if let syn::PathArguments::AngleBracketed(b) = &s.arguments { for a in &b.args { match a { syn::GenericArgument::Type(t) => get_lifetimes(t, set), syn::GenericArgument::Binding(b) => get_lifetimes(&b.ty, set), syn::GenericArgument::Lifetime(l) => { set.insert(l.clone()); } _ => {} } } } } } _ => {} } } /// Get the lifetime of a reference if its type matches the predicate. fn tyref_lifetime(ty: &syn::Type, pred: impl FnOnce(&syn::Type) -> bool) -> Option<syn::Lifetime> { if let syn::Type::Reference(p) = ty { if pred(&*p.elem) { return p.lifetime.clone() } } None } /// Get the set of lifetimes which need to be constrained to the decoding input lifetime. fn lifetimes_to_constrain<'a, I>(types: I) -> HashSet<syn::Lifetime> where I: Iterator<Item = (&'a Idx, &'a syn::Type)> { let mut set = HashSet::new(); for (i, t) in types { if let Some(l) = tyref_lifetime(t, is_str) { set.insert(l); continue } if let Some(l) = tyref_lifetime(t, is_byte_slice) { set.insert(l); continue } if let Some(l) = option_lifetime(t, is_str) { set.insert(l); continue } if let Some(l) = option_lifetime(t, is_byte_slice) { set.insert(l); continue } if i.is_b() { get_lifetimes(t, &mut set) } } set } /// The index attribute. #[derive(Debug, Clone, Copy)] enum Idx { /// A regular, non-borrowing index. N(u32), /// An index which indicates that the value borrows from the decoding input. B(u32) } impl ToTokens for Idx { fn to_tokens(&self, tokens: &mut proc_macro2::TokenStream) { tokens.append(proc_macro2::Literal::u32_unsuffixed(self.val())) } } impl Idx { /// Test if `Idx` is the `B` variant. fn is_b(self) -> bool { matches!(self, Idx::B(_)) } /// Get the numeric index value. fn val(self) -> u32 { match self { Idx::N(i) => i, Idx::B(i) => i } } } /// Get the index number from the list of attributes. /// /// The first attribute `n` will be used and its argument must be an /// unsigned integer literal that fits into a `u32`. fn index_number(s: Span, attrs: &[syn::Attribute]) -> syn::Result<Idx> { for a in attrs { if a.path.is_ident("n") { let lit: syn::LitInt = a.parse_args()?; return lit.base10_digits().parse() .map_err(|_| syn::Error::new(a.tokens.span(), "expected `u32` value")) .map(Idx::N) } if a.path.is_ident("b") { let lit: syn::LitInt = a.parse_args()?; return lit.base10_digits().parse() .map_err(|_| syn::Error::new(a.tokens.span(), "expected `u32` value")) .map(Idx::B) } } Err(syn::Error::new(s, "missing `#[n(...)]` or `#[b(...)]` attribute")) } /// Check that there are no duplicate elements in `iter`. fn check_uniq<I>(s: Span, iter: I) -> syn::Result<()> where I: IntoIterator<Item = Idx> { let mut set = HashSet::new(); let mut ctr = 0; for u in iter { set.insert(u.val()); ctr += 1; } if ctr != set.len() { return Err(syn::Error::new(s, "duplicate index numbers")) } Ok(()) } /// Get the index number of every field. fn field_indices<'a, I>(iter: I) -> syn::Result<Vec<Idx>> where I: Iterator<Item = &'a syn::Field> { iter.map(|f| index_number(f.span(), &f.attrs)).collect() } /// Get the index number of every variant. fn variant_indices<'a, I>(iter: I) -> syn::Result<Vec<Idx>> where I: Iterator<Item = &'a syn::Variant> { iter.map(|v| index_number(v.span(), &v.attrs)).collect() } /// The encoding to use for structs and enum variants. #[derive(Debug, Clone, Copy, PartialEq, Eq)] enum Encoding { Array, Map } impl Default for Encoding { fn default() -> Self { Encoding::Array } } /// Determine attribute value of the `#[cbor(map|array)]` attribute. fn encoding(a: &syn::Attribute) -> Option<Encoding> { match a.parse_meta().ok()? { syn::Meta::List(ml) if ml.path.is_ident("cbor") => { for nested in &ml.nested { if let syn::NestedMeta::Meta(syn::Meta::Path(arg)) = nested { if arg.is_ident("map") { return Some(Encoding::Map) } if arg.is_ident("array") { return Some(Encoding::Array) } } } } _ => {} } None } /// Custom encode/decode functions. enum CustomCodec { /// Custom encode function. /// /// Assumed to be of a type equivalent to: /// /// `fn<T, W: Write>(&T, &mut Encoder<W>) -> Result<(), Error<W::Error>>` /// /// Declared with `#[cbor(encode_with = "...")]`. Encode(syn::ExprPath), /// Custom decode function. /// /// Assumed to be of a type equivalent to: /// /// `fn<T>(&mut Decoder<'_>) -> Result<T, Error>` /// /// Declared with `#[cbor(decode_with = "...")]`. Decode(syn::ExprPath), /// A module which contains custom encode/decode functions. /// /// The module is assumed to contain two functions named `encode` and /// `decode` whose types match those declared with /// `#[cbor(encode_with = "...")]` or `#[cbor(decode_with = "...")]` /// respectively. Declared with `#[cbor(with = "...")]`. Both(syn::ExprPath) } impl CustomCodec { /// Is this a custom codec from `encode_with` or `with`? fn is_encode(&self) -> bool { matches!(self, CustomCodec::Encode(_) | CustomCodec::Both(_)) } /// Is this a custom codec from `decode_with` or `with`? fn is_decode(&self) -> bool { matches!(self, CustomCodec::Decode(_) | CustomCodec::Both(_)) } /// Extract the encode function unless this `CustomCodec` does not declare one. fn to_encode_path(&self) -> Option<syn::ExprPath> { match self { CustomCodec::Encode(p) => Some(p.clone()), CustomCodec::Decode(_) => None, CustomCodec::Both(p) => { let mut p = p.clone(); let ident = syn::Ident::new("encode", proc_macro2::Span::call_site()); p.path.segments.push(ident.into()); Some(p) } } } /// Extract the decode function unless this `CustomCodec` does not declare one. fn to_decode_path(&self) -> Option<syn::ExprPath> { match self { CustomCodec::Encode(_) => None, CustomCodec::Decode(p) => Some(p.clone()), CustomCodec::Both(p) => { let mut p = p.clone(); let ident = syn::Ident::new("decode", proc_macro2::Span::call_site()); p.path.segments.push(ident.into()); Some(p) } } } } /// Determine the attribute value of the `#[cbor(encode_with|decode_with|with)]` attribute. fn custom_codec(a: &syn::Attribute) -> syn::Result<Option<CustomCodec>> { if let syn::Meta::List(ml) = a.parse_meta()? { if !ml.path.is_ident("cbor") { return Ok(None) } for nested in &ml.nested { if let syn::NestedMeta::Meta(syn::Meta::NameValue(arg)) = nested { if arg.path.is_ident("encode_with") { if let syn::Lit::Str(path) = &arg.lit { return Ok(Some(CustomCodec::Encode(syn::parse_str(&path.value())?))) } } if arg.path.is_ident("decode_with") { if let syn::Lit::Str(path) = &arg.lit { return Ok(Some(CustomCodec::Decode(syn::parse_str(&path.value())?))) } } if arg.path.is_ident("with") { if let syn::Lit::Str(path) = &arg.lit { return Ok(Some(CustomCodec::Both(syn::parse_str(&path.value())?))) } } } } } Ok(None) } /// Traverse all field types and collect all type parameters along the way. fn collect_type_params<'a, I>(all: &syn::Generics, fields: I) -> HashSet<syn::TypeParam> where I: Iterator<Item = &'a syn::Field> { use syn::visit::Visit; struct Collector { all: Vec<syn::Ident>, found: HashSet<syn::TypeParam> } impl<'a> Visit<'a> for Collector { fn visit_field(&mut self, f: &'a syn::Field) { if let syn::Type::Path(ty) = &f.ty { if let Some(t) = ty.path.segments.first() { if self.all.contains(&t.ident) { self.found.insert(syn::TypeParam::from(t.ident.clone())); } } } self.visit_type(&f.ty) } fn visit_path(&mut self, p: &'a syn::Path) { if p.leading_colon.is_none() && p.segments.len() == 1 { let id = &p.segments[0].ident; if self.all.contains(id) { self.found.insert(syn::TypeParam::from(id.clone())); } } syn::visit::visit_path(self, p) } } let mut c = Collector { all: all.type_params().map(|tp| tp.ident.clone()).collect(), found: HashSet::new() }; for f in fields { c.visit_field(f) } c.found } /// Check if the attribute matches the given identifier. fn is_cbor_attr(a: &syn::Attribute, ident: &str, key_val: bool) -> syn::Result<bool> { match a.parse_meta()? { syn::Meta::List(ml) if ml.path.is_ident("cbor") => { for nested in &ml.nested { match nested { syn::NestedMeta::Meta(syn::Meta::Path(arg)) if !key_val=> if arg.is_ident(ident) { return Ok(true) } syn::NestedMeta::Meta(syn::Meta::NameValue(arg)) if key_val => if arg.path.is_ident(ident) { return Ok(true) } _ => {} } } } _ => {} } Ok(false) } /// Find any of the attributes that matches the given identifier. fn find_cbor_attr<'a, I>(attrs: I, ident: &str, kv: bool) -> syn::Result<Option<&'a syn::Attribute>> where I: Iterator<Item = &'a syn::Attribute> { for a in attrs { if is_cbor_attr(a, ident, kv)? { return Ok(Some(a)) } } Ok(None) }