1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
//! Procedural macros to derive minicbor's `Encode` and `Decode` traits.
//!
//! Deriving is supported for `struct`s and `enum`s. The encoding is optimised
//! for forward and backward compatibility and the overall approach is
//! influenced by [Google's Protocol Buffers][1].
//!
//! The goal is that ideally a change to a type still allows older software,
//! which is unaware of the changes, to decode values of the changed type
//! (forward compatibility) and newer software, to decode values of types
//! encoded by older software, which do not include the changes made to the
//! type (backward compatibility).
//!
//! In order to reach this goal, the encoding has the following characteristics:
//!
//! 1. The encoding does not contain any names, i.e. no field names, type names
//! or variant names. Instead, every field and every constructor needs to be
//! annotated with an (unsigned) index number, e.g. `#[n(1)]`.
//!
//! 2. Unknown fields are ignored during decoding.
//!
//! 3. Optional types default to `None` if their value is not present during
//! decoding.
//!
//! 4. Optional enums default to `None` if an unknown variant is encountered
//! during decoding.
//!
//! Item **1** ensures that names can be changed freely without compatibility
//! concerns. Item **2** ensures that new fields do not affect older software.
//! Item **3** ensures that newer software can stop producing optional values.
//! Item **4** ensures that enums can get new variants that older software is
//! not aware of. By "fields" we mean the elements of structs and tuple structs
//! as well as enum structs and enum tuples. In addition, it is a compatible
//! change to turn a unit variant into a struct or tuple variant if all fields
//! are optional.
//!
//! From the above it should be obvious that *non-optional fields need to be
//! present forever*, so they should only be part of a type after careful
//! consideration.
//!
//! It should be emphasised that an `enum` itself can not be changed in a
//! compatible way. An unknown variant causes an error. It is only when they
//! are declared as an optional field type that unknown variants of an enum
//! are mapped to `None`. In other words, *only structs can be used as
//! top-level types in a forward and backward compatible way, enums can not.*
//!
//! # Example
//!
//! ```
//! use minicbor::{Encode, Decode};
//!
//! #[derive(Encode, Decode)]
//! struct Point {
//! #[n(0)] x: f64,
//! #[n(1)] y: f64
//! }
//!
//! #[derive(Encode, Decode)]
//! struct ConvexHull {
//! #[n(0)] left: Point,
//! #[n(1)] right: Point,
//! #[n(2)] points: Vec<Point>,
//! #[n(3)] state: Option<State>
//! }
//!
//! #[derive(Encode, Decode)]
//! enum State {
//! #[n(0)] Start,
//! #[n(1)] Search { #[n(0)] info: u64 }
//! }
//! ```
//!
//! In this example the following changes would be compatible in both
//! directions:
//!
//! - Renaming every identifier.
//!
//! - Adding optional fields to `Point`, `ConvexHull`, `State::Start` or
//! `State::Search`.
//!
//! - Adding more variants to `State` *iff* `State` is only decoded as part of
//! `ConvexHull`. Direct decoding of `State` would produce an `UnknownVariant`
//! error for those new variants.
//!
//! [1]: https://developers.google.com/protocol-buffers/
//!
//! # Supported attributes
//!
//! - [`#[n(...)]` and `#[cbor(n(...))]`](#n-and-b-or-cborn-and-cborb)
//! - [`#[b(...)]` and `#[cbor(b(...))]`](#n-and-b-or-cborn-and-cborb)
//! - [`#[cbor(array)]`](#cborarray)
//! - [`#[cbor(map)]`](#cbormap)
//! - [`#[cbor(index_only)]`](#cborindex_only)
//! - [`#[cbor(transparent)]`](#cbortransparent)
//! - [`#[cbor(decode_with)]`](#cbordecode_with--path)
//! - [`#[cbor(encode_with)]`](#cborencode_with--path)
//! - [`#[cbor(with)]`](#cborwith--path)
//! - [`#[cbor(nil)]`](#cbornil--path)
//! - [`#[cbor(has_nil)]`](#cborhas_nil)
//! - [`#[cbor(is_nil)]`](#cboris_nil--path)
//! - [`#[cbor(decode_bound)]`](#cbordecode_bound--)
//! - [`#[cbor(encode_bound)]`](#cborencode_bound--)
//! - [`#[cbor(bound)]`](#cborbound)
//!
//! ## `#[n(...)]` and `#[b(...)]` (or `#[cbor(n(...))]` and `#[cbor(b(...))]`)
//!
//! Each field and variant needs to be annotated with an index number, which is
//! used instead of the name. For the encoding it makes no difference which one
//! to choose. For decoding, `b` indicates that the value borrows from the
//! decoding input, whereas `n` produces non-borrowed values (but see section
//! [Implicit borrowing](#implicit-borrowing) below). This means that if a type
//! is annotated with `#[b(...)]`, all its lifetimes will be constrained to the
//! input lifetime (`'bytes`). Further, if the type is a `std::borrow::Cow<'_, str>`
//! or `std::borrow::Cow<'_, minicbor::bytes::ByteSlice>`, the generated code
//! will decode the `str` or `ByteSlice` and construct a `Cow::Borrowed` variant,
//! contrary to the regular `Cow` impl of `Decode` which produces owned values.
//!
//! ## `#[cbor(array)]`
//!
//! Uses a CBOR array to encode the annotated struct, enum or enum variant.
//! When used with an enum it applies to all its variants but can be overriden
//! per variant. See section [CBOR encoding](#cbor-encoding) for details.
//!
//! If neither `#[cbor(array)]` nor `#[cbor(map)]` are specified, `#[cbor(array)]`
//! is used by default.
//!
//! ## `#[cbor(map)]`
//!
//! Use a CBOR map to encode the annotated struct, enum or enum variant.
//! When used with an enum it applies to all its variants but can be overriden
//! per variant. See section [CBOR encoding](#cbor-encoding) for details.
//!
//! If neither `#[cbor(array)]` nor `#[cbor(map)]` are specified, `#[cbor(array)]`
//! is used by default.
//!
//! ## `#[cbor(index_only)]`
//!
//! Enumerations which do not contain fields may have this attribute attached to
//! them. This changes the encoding to encode only the variant index (cf. section
//! [CBOR encoding](#cbor-encoding) for details).
//!
//! ## `#[cbor(transparent)]`
//!
//! This attribute can be attached to structs with exactly one field (aka newtypes).
//! If present, the generated `Encode` and `Decode` impls will just forward the
//! respective `encode` and `decode` calls to the inner type, i.e. the resulting
//! CBOR representation will be identical to the one of the inner type.
//!
//! ## `#[cbor(decode_with = "<path>")]`
//!
//! When applied to a field of type `T`, the function denoted by `<path>` will be
//! used to decode `T`. The function needs to be equivalent to the following type:
//!
//! ```no_run
//! use minicbor::decode::{Decoder, Error};
//!
//! fn decode<'b, T: 'b>(d: &mut Decoder<'b>) -> Result<T, Error> {
//! todo!()
//! }
//! ```
//!
//! ## `#[cbor(encode_with = "<path>")]`
//!
//! When applied to a field of type `T`, the function denoted by `<path>` will be
//! used to encode `T`. The function needs to be equivalent to the following type:
//!
//! ```no_run
//! use minicbor::encode::{Encoder, Error, Write};
//!
//! fn encode<T, W: Write>(v: &T, e: &mut Encoder<W>) -> Result<(), Error<W::Error>> {
//! todo!()
//! }
//! ```
//!
//! ## `#[cbor(with = "<path>")]`
//!
//! Combines [`#[cbor(decode_with = "...")]`](#cbordecode_with--path) and
//! [`#[cbor(encode_with = "...")]`](#cborencode_with--path). Here, `<path>` denotes
//! a module that contains functions named `encode` and `decode` that satisfy the
//! respective type signatures mentioned in `encode_with` and `decode_with`.
//!
//! ## `#[cbor(nil = "<path>")]`
//!
//! Only valid in conjuction with [`#[cbor(decode_with = "...")]`](#cbordecode_with--path).
//! If present, `<path>` denotes a function to create a nil-like value of type `T`.
//! See `minicbor::Decode::nil` for details. The function needs to be equivalent to the
//! following type:
//!
//! ```no_run
//! fn nil<T>() -> Option<T> {
//! todo!()
//! }
//! ```
//!
//! ## `#[cbor(has_nil)]`
//!
//! Only valid in conjuction with [`#[cbor(with = "...")]`](#cborwith--path). If present,
//! the attribute signals that the module denoted by `with` also contains functions `nil`
//! and `is_nil` to create nil values and to check if a value is a nil value.
//!
//! ## `#[cbor(is_nil = "<path>")]`
//!
//! Only valid in conjuction with [`#[cbor(encode_with = "...")]`](#cborencode_with--path).
//! If present, `<path>` denotes a function to check if a value of type `T` is a
//! nil-like value. See `minicbor::Encode::is_nil` for details. The function needs to
//! be equivalent to the following type:
//!
//! ```no_run
//! fn is_nil<T>(v: &T) -> bool {
//! todo!()
//! }
//! ```
//!
//! ## `#[cbor(decode_bound = "...")]`
//!
//! When applied to a generic field, this attribute overrides any implicit type
//! parameter bounds generated by `minicbor-derive` for the derived `Decode` impl.
//!
//! ## `#[cbor(encode_bound = "...")]`
//!
//! When applied to a generic field, this attribute overrides any implicit type
//! parameter bounds generated by `minicbor-derive` for the derived `Encode` impl.
//!
//! ## `#[cbor(bound)]`
//!
//! Combines [`#[cbor(encode_bound = "...")]`](#cborencode_bound--) and
//! [`#[cbor(decode_bound = "...")]`](#cbordecode_bound--), i.e. the bound applies
//! to the derived `Encode` and `Decode` impl.
//!
//! # Implicit borrowing
//!
//! Apart from the explicit borrowing with [`#[b(...)]`](#n-and-b-or-cborn-and-cborb),
//! the following types implicitly borrow from the decoding input, which means
//! their lifetimes are constrained by the input lifetime:
//!
//! - `&'_ str`
//! - `&'_ minicbor::bytes::ByteSlice`
//! - `Option<&'_ str>`
//! - `Option<&'_ minicbor::bytes::ByteSlice>`
//!
//! ## What about `&[u8]`?
//!
//! `&[u8]` is a special case of `&[T]`. The lack of trait impl specialisation
//! in Rust makes it difficult to provide optimised support for byte slices.
//! The generic `[T]` impl of `Encode` produces an array of `T`s. To specifically
//! encode to and decode from CBOR bytes, the types `ByteSlice`, `ByteArray` and
//! `ByteVec` are provided by `minicbor`. In addition, the attributes
//! `encode_with`, `decode_with` and `with` can be used with `&[u8]` when deriving,
//! e.g.
//!
//! ```
//! use minicbor::{Encode, Decode};
//!
//! #[derive(Encode, Decode)]
//! struct Foo<'a> {
//! #[cbor(n(0), with = "minicbor::bytes")]
//! field0: &'a [u8],
//!
//! #[n(1)]
//! #[cbor(encode_with = "minicbor::bytes::encode")]
//! #[cbor(decode_with = "minicbor::bytes::decode")]
//! field1: &'a [u8],
//!
//! #[cbor(n(2), with = "minicbor::bytes")]
//! field2: Option<&'a [u8]>,
//!
//! #[cbor(n(3), with = "minicbor::bytes")]
//! field3: Vec<u8>,
//!
//! #[cbor(n(4), with = "minicbor::bytes")]
//! field4: [u8; 16]
//! }
//! ```
//!
//! # CBOR encoding
//!
//! The CBOR values produced by a derived `Encode` implementation are of the
//! following formats.
//!
//! ## Structs
//!
//! ### Array encoding
//!
//! By default or if a struct has the [`#[cbor(array)]`](#cborarray) attribute,
//! it will be represented as a CBOR array. Its index numbers are represened by
//! the position of the field value in this array. Any gaps between index numbers
//! are filled with CBOR NULL values and `Option`s which are `None` likewise
//! end up as NULLs in this array.
//!
//! ```text
//! <<struct-as-array encoding>> =
//! `array(n)`
//! item_0
//! item_1
//! ...
//! item_n
//! ```
//!
//! ### Map encoding
//!
//! If a struct has the [`#[cbor(map)]`](#cbormap) attribute attached, then it
//! will be represented as a CBOR map with keys corresponding to the numeric
//! index value:
//!
//! ```text
//! <<struct-as-map encoding>> =
//! `map(n)`
//! `0` item_0
//! `1` item_1
//! ...
//! n item_n
//! ```
//!
//! Optional fields whose value is `None` are not encoded.
//!
//! ## Enums
//!
//! Unless the [`#[cbor(index_only)]`](#cborindex_only) attribute is used for
//! enums without any fields, each enum variant is encoded as a two-element
//! array. The first element is the variant index and the second the actual
//! variant value. Otherwise, if enums do not have fields and the `index_only`
//! attribute is present, only the variant index is encoded:
//!
//! ```text
//! <<enum encoding>> =
//! | `array(2)` n <<struct-as-array encoding>> ; if #[cbor(array)]
//! | `array(2)` n <<struct-as-map encoding>> ; if #[cbor(map)]
//! | n ; if #[cbor(index_only)]
//! ```
//!
//! ## Which encoding to use?
//!
//! The map encoding needs to represent the indexes explicitly in the encoding
//! which costs at least one extra byte per field value, whereas the array
//! encoding does not need to encode the indexes. On the other hand, absent
//! values, i.e. `None`s and gaps between indexes are not encoded with maps but
//! need to be encoded explicitly with arrays as NULLs which need one byte each.
//! Which encoding to choose depends therefore on the nature of the type that
//! should be encoded:
//!
//! - *Dense types* are types which contain only few `Option`s or their `Option`s
//! are assumed to be `Some`s usually. They are best encoded as arrays.
//!
//! - *Sparse types* are types with many `Option`s and their `Option`s are usually
//! `None`s. They are best encoded as maps.
//!
//! When selecting the encoding, future changes to the type should be considered
//! as they may turn a dense type into a sparse one over time. This also applies
//! to [`#[cbor(index_only)]`](#cborindex_only) which should be used only with
//! enums which are not expected to ever have fields in their variants.
#![allow(clippy::many_single_char_names)]
extern crate proc_macro;
mod decode;
mod encode;
pub(crate) mod attrs;
pub(crate) mod fields;
pub(crate) mod lifetimes;
pub(crate) mod variants;
use std::collections::HashSet;
/// Derive the `minicbor::Decode` trait for a struct or enum.
///
/// See the [crate] documentation for details.
#[proc_macro_derive(Decode, attributes(n, b, cbor))]
pub fn derive_decode(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
decode::derive_from(input)
}
/// Derive the `minicbor::Encode` trait for a struct or enum.
///
/// See the [crate] documentation for details.
#[proc_macro_derive(Encode, attributes(n, b, cbor))]
pub fn derive_encode(input: proc_macro::TokenStream) -> proc_macro::TokenStream {
encode::derive_from(input)
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
enum Mode {
Encode,
Decode
}
// Helpers ////////////////////////////////////////////////////////////////////
/// Check if the given type is an `Option` whose inner type matches the predicate.
fn is_option(ty: &syn::Type, pred: impl FnOnce(&syn::Type) -> bool) -> bool {
if let syn::Type::Path(t) = ty {
if let Some(s) = t.path.segments.last() {
if s.ident == "Option" {
if let syn::PathArguments::AngleBracketed(b) = &s.arguments {
if b.args.len() == 1 {
if let syn::GenericArgument::Type(ty) = &b.args[0] {
return pred(ty)
}
}
}
}
}
}
false
}
/// Check if the given type is a `Cow` whose inner type matches the predicate.
fn is_cow(ty: &syn::Type, pred: impl FnOnce(&syn::Type) -> bool) -> bool {
if let syn::Type::Path(t) = ty {
if let Some(s) = t.path.segments.last() {
if s.ident == "Cow" {
if let syn::PathArguments::AngleBracketed(b) = &s.arguments {
if b.args.len() == 2 {
if let syn::GenericArgument::Lifetime(_) = &b.args[0] {
if let syn::GenericArgument::Type(ty) = &b.args[1] {
return pred(ty)
}
}
}
}
}
}
}
false
}
/// Check if the given type is a `&str`.
fn is_str(ty: &syn::Type) -> bool {
if let syn::Type::Path(t) = ty {
t.qself.is_none() && t.path.segments.len() == 1 && t.path.segments[0].ident == "str"
} else {
false
}
}
/// Check if the given type is a `&[u8]`.
fn is_byte_slice(ty: &syn::Type) -> bool {
if let syn::Type::Path(t) = ty {
return t.qself.is_none() &&
((t.path.segments.len() == 1 && t.path.segments[0].ident == "ByteSlice")
|| (t.path.segments.len() == 2
&& t.path.segments[0].ident == "bytes"
&& t.path.segments[1].ident == "ByteSlice")
|| (t.path.segments.len() == 3
&& t.path.segments[0].ident == "minicbor"
&& t.path.segments[1].ident == "bytes"
&& t.path.segments[2].ident == "ByteSlice"))
}
if let syn::Type::Slice(t) = ty {
if let syn::Type::Path(t) = &*t.elem {
t.qself.is_none() && t.path.segments.len() == 1 && t.path.segments[0].ident == "u8"
} else {
false
}
} else {
false
}
}
/// Traverse all field types and collect all type parameters along the way.
fn collect_type_params<'a, I>(all: &syn::Generics, fields: I) -> HashSet<syn::TypeParam>
where
I: Iterator<Item = &'a syn::Field>
{
use syn::visit::Visit;
struct Collector {
all: Vec<syn::Ident>,
found: HashSet<syn::TypeParam>
}
impl<'a> Visit<'a> for Collector {
fn visit_field(&mut self, f: &'a syn::Field) {
if let syn::Type::Path(ty) = &f.ty {
if let Some(t) = ty.path.segments.first() {
if self.all.contains(&t.ident) {
self.found.insert(syn::TypeParam::from(t.ident.clone()));
}
}
}
self.visit_type(&f.ty)
}
fn visit_path(&mut self, p: &'a syn::Path) {
if p.leading_colon.is_none() && p.segments.len() == 1 {
let id = &p.segments[0].ident;
if self.all.contains(id) {
self.found.insert(syn::TypeParam::from(id.clone()));
}
}
syn::visit::visit_path(self, p)
}
}
let mut c = Collector {
all: all.type_params().map(|tp| tp.ident.clone()).collect(),
found: HashSet::new()
};
for f in fields {
c.visit_field(f)
}
c.found
}
fn add_bound_to_type_params<'a, I>
( bound: syn::TypeParamBound
, params: I
, blacklist: &HashSet<syn::TypeParam>
, attrs: &[attrs::Attributes]
, mode: Mode
)
where
I: IntoIterator<Item = &'a mut syn::TypeParam>
{
let find_type_param = |t: &syn::TypeParam| attrs.iter()
.find_map(|a| {
a.type_params().and_then(|p| match mode {
Mode::Encode => p.get_encode(&t.ident),
Mode::Decode => p.get_decode(&t.ident)
})
});
for p in params {
if let Some(t) = find_type_param(p) {
p.bounds.extend(t.bounds.iter().cloned())
} else if !blacklist.contains(p) {
p.bounds.push(bound.clone())
}
}
}