1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
//! A small [CBOR] codec suitable for `no_std` environments.
//!
//! The crate is organised around the following entities:
//!
//! - [`Encoder`] and [`Decoder`] for type-directed encoding and decoding
//! of values.
//!
//! - [`Encode`] and [`Decode`] traits which can be implemented for any
//! type that should be encoded to or decoded from CBOR. They are similar
//! to [serde]'s `Serialize` and `Deserialize` traits but do not abstract
//! over the encoder/decoder.
//!
//! Encoding and decoding proceeds in a type-directed way, i.e. by calling
//! methods for expected data item types, e.g. [`Decoder::u32`] or
//! [`Encoder::str`]. In addition there is support for data type inspection.
//! The `Decoder` can be queried for the current data type which returns a
//! [`data::Type`] that can represent every possible CBOR type and decoding
//! can thus proceed based on this information. It is also possible to just
//! tokenize the input bytes using a [`Tokenizer`](decode::Tokenizer), i.e.
//! an `Iterator` over CBOR [`Token`](data::Token)s. Finally, the length
//! in bytes of a value's CBOR representation can be calculated if the
//! value's type implements the [`CborLen`] trait.
//!
//! Optionally, `Encode` and `Decode` can be derived for structs and enums
//! using the respective derive macros (*requires feature* `"derive"`).
//! See [`minicbor_derive`] for details.
//!
//! For I/O support see [`minicbor-io`][1].
//!
//! Support for [serde][2] is available in [`minicbor-serde`][3].
//!
//! [1]: https://docs.rs/minicbor_io/
//! [2]: https://crates.io/crates/serde
//! [3]: https://crates.io/crates/minicbor-serde
//!
//! # Feature flags
//!
//! The following feature flags are supported:
//!
//! - `"alloc"`: Enables most collection types in a `no_std` environment.
//!
//! - `"std"`: Implies `"alloc"` and enables more functionality that depends
//! on the `std` crate.
//!
//! - `"derive"`: Allows deriving [`Encode`] and [`Decode`] traits.
//!
//! # Example: generic encoding and decoding
//!
//! ```
//! use minicbor::{Encode, Decode};
//!
//! let input = ["hello", "world"];
//! let mut buffer = [0u8; 128];
//!
//! minicbor::encode(&input, buffer.as_mut())?;
//! let output: [&str; 2] = minicbor::decode(buffer.as_ref())?;
//! assert_eq!(input, output);
//!
//! # Ok::<_, Box<dyn core::error::Error>>(())
//! ```
//!
//! # Example: ad-hoc encoding
//!
//! ```
//! use minicbor::Encoder;
//!
//! let mut buffer = [0u8; 128];
//! let mut encoder = Encoder::new(&mut buffer[..]);
//!
//! encoder.begin_map()? // using an indefinite map here
//! .str("hello")?.str("world")?
//! .str("submap")?.map(2)?
//! .u8(1)?.bool(true)?
//! .u8(2)?.bool(false)?
//! .u16(34234)?.array(3)?.u8(1)?.u8(2)?.u8(3)?
//! .bool(true)?.null()?
//! .end()?;
//!
//! # Ok::<_, Box<dyn core::error::Error>>(())
//! ```
//!
//! # Example: ad-hoc decoding
//!
//! ```
//! use minicbor::Decoder;
//! use minicbor::data::IanaTag;
//!
//! let input = [
//! 0xc0, 0x74, 0x32, 0x30, 0x31, 0x33, 0x2d, 0x30,
//! 0x33, 0x2d, 0x32, 0x31, 0x54, 0x32, 0x30, 0x3a,
//! 0x30, 0x34, 0x3a, 0x30, 0x30, 0x5a
//! ];
//!
//! let mut decoder = Decoder::new(&input);
//! assert_eq!(IanaTag::DateTime.tag(), decoder.tag()?);
//! assert_eq!("2013-03-21T20:04:00Z", decoder.str()?);
//! # Ok::<_, Box<dyn core::error::Error>>(())
//! ```
//!
//! # Example: tokenization
//!
//! ```
//! use minicbor::display;
//! use minicbor::{Encoder, Decoder};
//! use minicbor::data::Token;
//!
//! let input = [0x83, 0x01, 0x9f, 0x02, 0x03, 0xff, 0x82, 0x04, 0x05];
//!
//! assert_eq!("[1, [_ 2, 3], [4, 5]]", format!("{}", display(&input)));
//!
//! let tokens = Decoder::new(&input).tokens().collect::<Result<Vec<Token>, _>>()?;
//!
//! assert_eq! { &tokens[..],
//! &[Token::Array(3),
//! Token::U8(1),
//! Token::BeginArray,
//! Token::U8(2),
//! Token::U8(3),
//! Token::Break,
//! Token::Array(2),
//! Token::U8(4),
//! Token::U8(5)]
//! };
//!
//! let mut buffer = [0u8; 9];
//! Encoder::new(buffer.as_mut()).tokens(&tokens)?;
//!
//! assert_eq!(input, buffer);
//!
//! # Ok::<_, Box<dyn core::error::Error>>(())
//! ```
//!
//! [CBOR]: https://datatracker.ietf.org/doc/html/rfc8949
//! [serde]: https://serde.rs
#![forbid(unused_variables)]
#![allow(clippy::needless_lifetimes)]
#![cfg_attr(not(feature = "std"), no_std)]
#[cfg(feature = "alloc")]
extern crate alloc;
pub mod bytes;
pub mod data;
pub mod decode;
pub mod encode;
const UNSIGNED: u8 = 0x00;
const SIGNED: u8 = 0x20;
const BYTES: u8 = 0x40;
const TEXT: u8 = 0x60;
const ARRAY: u8 = 0x80;
const MAP: u8 = 0xa0;
const TAGGED: u8 = 0xc0;
const SIMPLE: u8 = 0xe0;
const BREAK: u8 = 0xff;
pub use decode::{Decode, Decoder};
pub use encode::{Encode, Encoder, CborLen};
#[cfg(feature = "derive")]
pub use minicbor_derive::*;
#[cfg(feature = "alloc")]
use core::convert::Infallible;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
/// Decode a type implementing [`Decode`] from the given byte slice.
pub fn decode<'b, T>(b: &'b [u8]) -> Result<T, decode::Error>
where
T: Decode<'b, ()>
{
Decoder::new(b).decode()
}
/// Decode a type implementing [`Decode`] from the given byte slice.
pub fn decode_with<'b, C, T>(b: &'b [u8], ctx: &mut C) -> Result<T, decode::Error>
where
T: Decode<'b, C>
{
Decoder::new(b).decode_with(ctx)
}
/// Encode a type implementing [`Encode`] to the given [`encode::Write`] impl.
pub fn encode<T, W>(x: T, w: W) -> Result<(), encode::Error<W::Error>>
where
T: Encode<()>,
W: encode::Write
{
Encoder::new(w).encode(x)?.ok()
}
/// Encode a type implementing [`Encode`] to the given [`encode::Write`] impl.
pub fn encode_with<C, T, W>(x: T, w: W, ctx: &mut C) -> Result<(), encode::Error<W::Error>>
where
T: Encode<C>,
W: encode::Write
{
Encoder::new(w).encode_with(x, ctx)?.ok()
}
/// Encode a type implementing [`Encode`] and return the encoded byte vector.
///
/// *Requires feature* `"alloc"`.
#[cfg(feature = "alloc")]
pub fn to_vec<T>(x: T) -> Result<Vec<u8>, encode::Error<Infallible>>
where
T: Encode<()>
{
let mut e = Encoder::new(Vec::new());
x.encode(&mut e, &mut ())?;
Ok(e.into_writer())
}
/// Encode a type implementing [`Encode`] and return the encoded byte vector.
///
/// *Requires feature* `"alloc"`.
#[cfg(feature = "alloc")]
pub fn to_vec_with<C, T>(x: T, ctx: &mut C) -> Result<Vec<u8>, encode::Error<Infallible>>
where
T: Encode<C>
{
let mut e = Encoder::new(Vec::new());
x.encode(&mut e, ctx)?;
Ok(e.into_writer())
}
/// Display the given CBOR bytes in [diagnostic notation][1].
///
/// *Requires features* `"alloc"` *and* `"half"`.
///
/// Quick syntax summary:
///
/// - Maps are enclosed in curly braces: `{` and `}`.
/// - Arrays are enclosed in brackets: `[` and `]`.
/// - Indefinite maps start with `{_` instead of `{`.
/// - Indefinite arrays start with `[_` instead of `[`.
/// - Bytes are hex encoded and enclosed in `h'` and `'`.
/// - Strings are enclosed in double quotes.
/// - Numbers and booleans are displayed as in Rust but floats are always
/// shown in scientific notation (this differs slightly from the RFC
/// format).
/// - Indefinite bytes are enclosed in `(_` and `)` except for the empty
/// sequence which is shown as `''_`.
/// - Indefinite strings are enclosed in `(_` and `)` except for the empty
/// sequence which is shown as `""_`.
/// - Tagged values are enclosed in `t(` and `)` where `t` is the numeric
/// tag value.
/// - Simple values are shown as `simple(n)` where `n` is the numeric
/// simple value.
/// - Undefined and null are shown as `undefined` and `null`.
///
/// No error is produced should decoding fail, the error message
/// becomes part of the display.
///
/// [1]: https://www.rfc-editor.org/rfc/rfc8949.html#section-8
#[cfg(all(feature = "alloc", feature = "half"))]
pub fn display<'b>(cbor: &'b [u8]) -> impl core::fmt::Display + 'b {
decode::Tokenizer::new(cbor)
}
/// Calculate the length in bytes of the given value's CBOR representation.
pub fn len<T>(x: T) -> usize
where
T: CborLen<()>
{
x.cbor_len(&mut ())
}
/// Calculate the length in bytes of the given value's CBOR representation.
pub fn len_with<C, T>(x: T, ctx: &mut C) -> usize
where
T: CborLen<C>
{
x.cbor_len(ctx)
}
// Ensure we can safely cast a `usize` to a `u64`.
const __USIZE_FITS_INTO_U64: () =
assert!(core::mem::size_of::<usize>() <= core::mem::size_of::<u64>());