minimal_lexical/num.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
//! Utilities for Rust numbers.
#![doc(hidden)]
#[cfg(all(not(feature = "std"), feature = "compact"))]
use crate::libm::{powd, powf};
#[cfg(not(feature = "compact"))]
use crate::table::{SMALL_F32_POW10, SMALL_F64_POW10, SMALL_INT_POW10, SMALL_INT_POW5};
#[cfg(not(feature = "compact"))]
use core::hint;
use core::ops;
/// Generic floating-point type, to be used in generic code for parsing.
///
/// Although the trait is part of the public API, the trait provides methods
/// and constants that are effectively non-public: they may be removed
/// at any time without any breaking changes.
pub trait Float:
Sized
+ Copy
+ PartialEq
+ PartialOrd
+ Send
+ Sync
+ ops::Add<Output = Self>
+ ops::AddAssign
+ ops::Div<Output = Self>
+ ops::DivAssign
+ ops::Mul<Output = Self>
+ ops::MulAssign
+ ops::Rem<Output = Self>
+ ops::RemAssign
+ ops::Sub<Output = Self>
+ ops::SubAssign
+ ops::Neg<Output = Self>
{
/// Maximum number of digits that can contribute in the mantissa.
///
/// We can exactly represent a float in radix `b` from radix 2 if
/// `b` is divisible by 2. This function calculates the exact number of
/// digits required to exactly represent that float.
///
/// According to the "Handbook of Floating Point Arithmetic",
/// for IEEE754, with emin being the min exponent, p2 being the
/// precision, and b being the radix, the number of digits follows as:
///
/// `−emin + p2 + ⌊(emin + 1) log(2, b) − log(1 − 2^(−p2), b)⌋`
///
/// For f32, this follows as:
/// emin = -126
/// p2 = 24
///
/// For f64, this follows as:
/// emin = -1022
/// p2 = 53
///
/// In Python:
/// `-emin + p2 + math.floor((emin+1)*math.log(2, b) - math.log(1-2**(-p2), b))`
///
/// This was used to calculate the maximum number of digits for [2, 36].
const MAX_DIGITS: usize;
// MASKS
/// Bitmask for the sign bit.
const SIGN_MASK: u64;
/// Bitmask for the exponent, including the hidden bit.
const EXPONENT_MASK: u64;
/// Bitmask for the hidden bit in exponent, which is an implicit 1 in the fraction.
const HIDDEN_BIT_MASK: u64;
/// Bitmask for the mantissa (fraction), excluding the hidden bit.
const MANTISSA_MASK: u64;
// PROPERTIES
/// Size of the significand (mantissa) without hidden bit.
const MANTISSA_SIZE: i32;
/// Bias of the exponet
const EXPONENT_BIAS: i32;
/// Exponent portion of a denormal float.
const DENORMAL_EXPONENT: i32;
/// Maximum exponent value in float.
const MAX_EXPONENT: i32;
// ROUNDING
/// Mask to determine if a full-carry occurred (1 in bit above hidden bit).
const CARRY_MASK: u64;
/// Bias for marking an invalid extended float.
// Value is `i16::MIN`, using hard-coded constants for older Rustc versions.
const INVALID_FP: i32 = -0x8000;
// Maximum mantissa for the fast-path (`1 << 53` for f64).
const MAX_MANTISSA_FAST_PATH: u64 = 2_u64 << Self::MANTISSA_SIZE;
// Largest exponent value `(1 << EXP_BITS) - 1`.
const INFINITE_POWER: i32 = Self::MAX_EXPONENT + Self::EXPONENT_BIAS;
// Round-to-even only happens for negative values of q
// when q ≥ −4 in the 64-bit case and when q ≥ −17 in
// the 32-bitcase.
//
// When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we
// have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have
// 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10.
//
// When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64
// so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case)
// or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64
// (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11
// or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase).
//
// Thus we have that we only need to round ties to even when
// we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10]
// (in the 32-bit case). In both cases,the power of five(5^|q|)
// fits in a 64-bit word.
const MIN_EXPONENT_ROUND_TO_EVEN: i32;
const MAX_EXPONENT_ROUND_TO_EVEN: i32;
/// Minimum normal exponent value `-(1 << (EXPONENT_SIZE - 1)) + 1`.
const MINIMUM_EXPONENT: i32;
/// Smallest decimal exponent for a non-zero value.
const SMALLEST_POWER_OF_TEN: i32;
/// Largest decimal exponent for a non-infinite value.
const LARGEST_POWER_OF_TEN: i32;
/// Minimum exponent that for a fast path case, or `-⌊(MANTISSA_SIZE+1)/log2(10)⌋`
const MIN_EXPONENT_FAST_PATH: i32;
/// Maximum exponent that for a fast path case, or `⌊(MANTISSA_SIZE+1)/log2(5)⌋`
const MAX_EXPONENT_FAST_PATH: i32;
/// Maximum exponent that can be represented for a disguised-fast path case.
/// This is `MAX_EXPONENT_FAST_PATH + ⌊(MANTISSA_SIZE+1)/log2(10)⌋`
const MAX_EXPONENT_DISGUISED_FAST_PATH: i32;
/// Convert 64-bit integer to float.
fn from_u64(u: u64) -> Self;
// Re-exported methods from std.
fn from_bits(u: u64) -> Self;
fn to_bits(self) -> u64;
/// Get a small power-of-radix for fast-path multiplication.
///
/// # Safety
///
/// Safe as long as the exponent is smaller than the table size.
unsafe fn pow_fast_path(exponent: usize) -> Self;
/// Get a small, integral power-of-radix for fast-path multiplication.
///
/// # Safety
///
/// Safe as long as the exponent is smaller than the table size.
#[inline(always)]
unsafe fn int_pow_fast_path(exponent: usize, radix: u32) -> u64 {
// SAFETY: safe as long as the exponent is smaller than the radix table.
#[cfg(not(feature = "compact"))]
return match radix {
5 => unsafe { *SMALL_INT_POW5.get_unchecked(exponent) },
10 => unsafe { *SMALL_INT_POW10.get_unchecked(exponent) },
_ => unsafe { hint::unreachable_unchecked() },
};
#[cfg(feature = "compact")]
return (radix as u64).pow(exponent as u32);
}
/// Returns true if the float is a denormal.
#[inline]
fn is_denormal(self) -> bool {
self.to_bits() & Self::EXPONENT_MASK == 0
}
/// Get exponent component from the float.
#[inline]
fn exponent(self) -> i32 {
if self.is_denormal() {
return Self::DENORMAL_EXPONENT;
}
let bits = self.to_bits();
let biased_e: i32 = ((bits & Self::EXPONENT_MASK) >> Self::MANTISSA_SIZE) as i32;
biased_e - Self::EXPONENT_BIAS
}
/// Get mantissa (significand) component from float.
#[inline]
fn mantissa(self) -> u64 {
let bits = self.to_bits();
let s = bits & Self::MANTISSA_MASK;
if !self.is_denormal() {
s + Self::HIDDEN_BIT_MASK
} else {
s
}
}
}
impl Float for f32 {
const MAX_DIGITS: usize = 114;
const SIGN_MASK: u64 = 0x80000000;
const EXPONENT_MASK: u64 = 0x7F800000;
const HIDDEN_BIT_MASK: u64 = 0x00800000;
const MANTISSA_MASK: u64 = 0x007FFFFF;
const MANTISSA_SIZE: i32 = 23;
const EXPONENT_BIAS: i32 = 127 + Self::MANTISSA_SIZE;
const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
const MAX_EXPONENT: i32 = 0xFF - Self::EXPONENT_BIAS;
const CARRY_MASK: u64 = 0x1000000;
const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -17;
const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 10;
const MINIMUM_EXPONENT: i32 = -127;
const SMALLEST_POWER_OF_TEN: i32 = -65;
const LARGEST_POWER_OF_TEN: i32 = 38;
const MIN_EXPONENT_FAST_PATH: i32 = -10;
const MAX_EXPONENT_FAST_PATH: i32 = 10;
const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 17;
#[inline(always)]
unsafe fn pow_fast_path(exponent: usize) -> Self {
// SAFETY: safe as long as the exponent is smaller than the radix table.
#[cfg(not(feature = "compact"))]
return unsafe { *SMALL_F32_POW10.get_unchecked(exponent) };
#[cfg(feature = "compact")]
return powf(10.0f32, exponent as f32);
}
#[inline]
fn from_u64(u: u64) -> f32 {
u as _
}
#[inline]
fn from_bits(u: u64) -> f32 {
// Constant is `u32::MAX` for older Rustc versions.
debug_assert!(u <= 0xffff_ffff);
f32::from_bits(u as u32)
}
#[inline]
fn to_bits(self) -> u64 {
f32::to_bits(self) as u64
}
}
impl Float for f64 {
const MAX_DIGITS: usize = 769;
const SIGN_MASK: u64 = 0x8000000000000000;
const EXPONENT_MASK: u64 = 0x7FF0000000000000;
const HIDDEN_BIT_MASK: u64 = 0x0010000000000000;
const MANTISSA_MASK: u64 = 0x000FFFFFFFFFFFFF;
const MANTISSA_SIZE: i32 = 52;
const EXPONENT_BIAS: i32 = 1023 + Self::MANTISSA_SIZE;
const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
const MAX_EXPONENT: i32 = 0x7FF - Self::EXPONENT_BIAS;
const CARRY_MASK: u64 = 0x20000000000000;
const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -4;
const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 23;
const MINIMUM_EXPONENT: i32 = -1023;
const SMALLEST_POWER_OF_TEN: i32 = -342;
const LARGEST_POWER_OF_TEN: i32 = 308;
const MIN_EXPONENT_FAST_PATH: i32 = -22;
const MAX_EXPONENT_FAST_PATH: i32 = 22;
const MAX_EXPONENT_DISGUISED_FAST_PATH: i32 = 37;
#[inline(always)]
unsafe fn pow_fast_path(exponent: usize) -> Self {
// SAFETY: safe as long as the exponent is smaller than the radix table.
#[cfg(not(feature = "compact"))]
return unsafe { *SMALL_F64_POW10.get_unchecked(exponent) };
#[cfg(feature = "compact")]
return powd(10.0f64, exponent as f64);
}
#[inline]
fn from_u64(u: u64) -> f64 {
u as _
}
#[inline]
fn from_bits(u: u64) -> f64 {
f64::from_bits(u)
}
#[inline]
fn to_bits(self) -> u64 {
f64::to_bits(self)
}
}
#[inline(always)]
#[cfg(all(feature = "std", feature = "compact"))]
pub fn powf(x: f32, y: f32) -> f32 {
x.powf(y)
}
#[inline(always)]
#[cfg(all(feature = "std", feature = "compact"))]
pub fn powd(x: f64, y: f64) -> f64 {
x.powf(y)
}