1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
// Copyright 2020 TiKV Project Authors. Licensed under Apache-2.0.

//! An attribute macro designed to eliminate boilerplate code for [`minitrace`](https://crates.io/crates/minitrace).

#![recursion_limit = "256"]
// Instrumenting the async fn is not as straight forward as expected because `async_trait` rewrites
// `async fn` into a normal fn which returns `Box<impl Future>`, and this stops the macro from
// distinguishing `async fn` from `fn`. The following code reused the `async_trait` probes from [tokio-tracing](https://github.com/tokio-rs/tracing/blob/6a61897a5e834988ad9ac709e28c93c4dbf29116/tracing-attributes/src/expand.rs).

extern crate proc_macro;

#[macro_use]
extern crate proc_macro_error;

use std::collections::HashMap;

use proc_macro2::Span;
use quote::quote_spanned;
use syn::parse::Parse;
use syn::parse::ParseStream;
use syn::punctuated::Punctuated;
use syn::spanned::Spanned;
use syn::*;

struct Args {
    name: Option<String>,
    short_name: bool,
    enter_on_poll: bool,
    properties: Vec<(String, String)>,
}

struct Property {
    key: String,
    value: String,
}

impl Parse for Property {
    fn parse(input: ParseStream) -> Result<Self> {
        let key: LitStr = input.parse()?;
        input.parse::<Token![:]>()?;
        let value: LitStr = input.parse()?;
        Ok(Property {
            key: key.value(),
            value: value.value(),
        })
    }
}

impl Parse for Args {
    fn parse(input: ParseStream) -> Result<Self> {
        let mut name = None;
        let mut short_name = false;
        let mut enter_on_poll = false;
        let mut properties = Vec::new();
        let mut seen = HashMap::new();

        while !input.is_empty() {
            let ident: Ident = input.parse()?;
            if seen.contains_key(&ident.to_string()) {
                return Err(syn::Error::new(ident.span(), "duplicate argument"));
            }
            seen.insert(ident.to_string(), ());
            input.parse::<Token![=]>()?;
            match ident.to_string().as_str() {
                "name" => {
                    let parsed_name: LitStr = input.parse()?;
                    name = Some(parsed_name.value());
                }
                "short_name" => {
                    let parsed_short_name: LitBool = input.parse()?;
                    short_name = parsed_short_name.value;
                }
                "enter_on_poll" => {
                    let parsed_enter_on_poll: LitBool = input.parse()?;
                    enter_on_poll = parsed_enter_on_poll.value;
                }
                "properties" => {
                    let content;
                    let _brace_token = syn::braced!(content in input);
                    let property_list: Punctuated<Property, Token![,]> =
                        content.parse_terminated(Property::parse)?;
                    for property in property_list {
                        if properties.iter().any(|(k, _)| k == &property.key) {
                            return Err(syn::Error::new(
                                Span::call_site(),
                                "duplicate property key",
                            ));
                        }
                        properties.push((property.key, property.value));
                    }
                }
                _ => return Err(syn::Error::new(Span::call_site(), "unexpected identifier")),
            }
            if !input.is_empty() {
                let _ = input.parse::<Token![,]>();
            }
        }

        Ok(Args {
            name,
            short_name,
            enter_on_poll,
            properties,
        })
    }
}

/// An attribute macro designed to eliminate boilerplate code.
///
/// This macro automatically creates a span for the annotated function. The span name defaults to
/// the function name but can be customized by passing a string literal as an argument using the
/// `name` parameter.
///
/// The `#[trace]` attribute requires a local parent context to function correctly. Ensure that
/// the function annotated with `#[trace]` is called within __a local context of a `Span`__, which
/// is established by invoking the `Span::set_local_parent()` method.
///
/// ## Arguments
///
/// * `name` - The name of the span. Defaults to the full path of the function.
/// * `short_name` - Whether to use the function name without path as the span name. Defaults to
///   `false`.
/// * `enter_on_poll` - Whether to enter the span on poll. If set to `false`, `in_span` will be
///   used. Only available for `async fn`. Defaults to `false`.
/// * `properties` - A list of key-value pairs to be added as properties to the span. The value can
///   be a format string, where the function arguments are accessible. Defaults to `{}`.
///
/// # Examples
///
/// ```
/// use minitrace::prelude::*;
///
/// #[trace]
/// fn simple() {
///     // ...
/// }
///
/// #[trace(short_name = true)]
/// async fn simple_async() {
///     // ...
/// }
///
/// #[trace(name = "qux", enter_on_poll = true)]
/// async fn baz() {
///     // ...
/// }
///
/// #[trace(properties = { "k1": "v1", "a": "argument `a` is {a:?}" })]
/// async fn properties(a: u64) {
///     // ...
/// }
/// ```
///
/// The code snippets above will be expanded to:
///
/// ```
/// # use minitrace::prelude::*;
/// # use minitrace::local::LocalSpan;
/// fn simple() {
///     let __guard__ = LocalSpan::enter_with_local_parent("example::simple");
///     // ...
/// }
///
/// async fn simple_async() {
///     let __span__ = Span::enter_with_local_parent("simple_async");
///     async {
///         // ...
///     }
///     .in_span(__span__)
///     .await
/// }
///
/// async fn baz() {
///     async {
///         // ...
///     }
///     .enter_on_poll("qux")
///     .await
/// }
///
/// async fn properties(a: u64) {
///     let __span__ = Span::enter_with_local_parent("example::properties").with_properties(|| {
///         [
///             (std::borrow::Cow::from("k1"), std::borrow::Cow::from("v1")),
///             (
///                 std::borrow::Cow::from("a"),
///                 std::borrow::Cow::from(format!("argument `a` is {a:?}")),
///             ),
///         ]
///     });
///     async {
///         // ...
///     }
///     .in_span(__span__)
///     .await
/// }
/// ```
#[proc_macro_attribute]
#[proc_macro_error]
pub fn trace(
    args: proc_macro::TokenStream,
    item: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
    let args = parse_macro_input!(args as Args);
    let input = syn::parse_macro_input!(item as ItemFn);

    let func_name = input.sig.ident.to_string();
    // check for async_trait-like patterns in the block, and instrument
    // the future instead of the wrapper
    let func_body = if let Some(internal_fun) =
        get_async_trait_info(&input.block, input.sig.asyncness.is_some())
    {
        // let's rewrite some statements!
        match internal_fun.kind {
            // async-trait <= 0.1.43
            AsyncTraitKind::Function => {
                unimplemented!(
                    "Please upgrade the crate `async-trait` to a version higher than 0.1.44"
                )
            }
            // async-trait >= 0.1.44
            AsyncTraitKind::Async(async_expr) => {
                // fallback if we couldn't find the '__async_trait' binding, might be
                // useful for crates exhibiting the same behaviors as async-trait
                let instrumented_block =
                    gen_block(&func_name, &async_expr.block, true, false, &args);
                let async_attrs = &async_expr.attrs;
                quote::quote! {
                    Box::pin(#(#async_attrs) * #instrumented_block)
                }
            }
        }
    } else {
        gen_block(
            &func_name,
            &input.block,
            input.sig.asyncness.is_some(),
            input.sig.asyncness.is_some(),
            &args,
        )
    };

    let ItemFn {
        attrs, vis, sig, ..
    } = input;

    let Signature {
        output: return_type,
        inputs: params,
        unsafety,
        constness,
        abi,
        ident,
        asyncness,
        generics:
            Generics {
                params: gen_params,
                where_clause,
                ..
            },
        ..
    } = sig;

    quote::quote!(
        #(#attrs) *
        #vis #constness #unsafety #asyncness #abi fn #ident<#gen_params>(#params) #return_type
        #where_clause
        {
            #func_body
        }
    )
    .into()
}

fn gen_name(span: proc_macro2::Span, func_name: &str, args: &Args) -> proc_macro2::TokenStream {
    match &args.name {
        Some(name) if name.is_empty() => {
            abort_call_site!("`name` can not be empty")
        }
        Some(_) if args.short_name => {
            abort_call_site!("`name` and `short_name` can not be used together")
        }
        Some(name) => {
            quote_spanned!(span=>
                #name
            )
        }
        None if args.short_name => {
            quote_spanned!(span=>
                #func_name
            )
        }
        None => {
            quote_spanned!(span=>
                minitrace::full_name!()
            )
        }
    }
}

fn gen_properties(span: proc_macro2::Span, args: &Args) -> proc_macro2::TokenStream {
    if args.properties.is_empty() {
        return quote::quote!();
    }

    if args.enter_on_poll {
        abort_call_site!("`enter_on_poll` can not be used with `properties`")
    }

    let properties = args.properties.iter().map(|(k, v)| {
        let k = k.as_str();
        let v = v.as_str();

        let (v, need_format) = unescape_format_string(v);

        if need_format {
            quote_spanned!(span=>
                (std::borrow::Cow::from(#k), std::borrow::Cow::from(format!(#v)))
            )
        } else {
            quote_spanned!(span=>
                (std::borrow::Cow::from(#k), std::borrow::Cow::from(#v))
            )
        }
    });
    let properties = Punctuated::<_, Token![,]>::from_iter(properties);
    quote_spanned!(span=>
        .with_properties(|| [ #properties ])
    )
}

fn unescape_format_string(s: &str) -> (String, bool) {
    let unescaped_delete = s.replace("{{", "").replace("}}", "");
    let contains_valid_format_string =
        unescaped_delete.contains('{') || unescaped_delete.contains('}');
    if contains_valid_format_string {
        (s.to_string(), true)
    } else {
        let unescaped_replace = s.replace("{{", "{").replace("}}", "}");
        (unescaped_replace, false)
    }
}

/// Instrument a block
fn gen_block(
    func_name: &str,
    block: &Block,
    async_context: bool,
    async_keyword: bool,
    args: &Args,
) -> proc_macro2::TokenStream {
    let name = gen_name(block.span(), func_name, args);
    let properties = gen_properties(block.span(), args);

    // Generate the instrumented function body.
    // If the function is an `async fn`, this will wrap it in an async block.
    // Otherwise, this will enter the span and then perform the rest of the body.
    if async_context {
        let block = if args.enter_on_poll {
            quote_spanned!(block.span()=>
                minitrace::future::FutureExt::enter_on_poll(
                    async move { #block },
                    #name
                )
            )
        } else {
            quote_spanned!(block.span()=>
                {
                    let __span__ = minitrace::Span::enter_with_local_parent( #name ) #properties;
                    minitrace::future::FutureExt::in_span(
                        async move { #block },
                        __span__,
                    )
                }
            )
        };

        if async_keyword {
            quote_spanned!(block.span()=>
                #block.await
            )
        } else {
            block
        }
    } else {
        if args.enter_on_poll {
            abort_call_site!("`enter_on_poll` can not be applied on non-async function");
        }

        quote_spanned!(block.span()=>
            let __guard__ = minitrace::local::LocalSpan::enter_with_local_parent( #name ) #properties;
            #block
        )
    }
}

enum AsyncTraitKind<'a> {
    // old construction. Contains the function
    Function,
    // new construction. Contains a reference to the async block
    Async(&'a ExprAsync),
}

struct AsyncTraitInfo<'a> {
    // statement that must be patched
    _source_stmt: &'a Stmt,
    kind: AsyncTraitKind<'a>,
}

// Get the AST of the inner function we need to hook, if it was generated
// by async-trait.
// When we are given a function annotated by async-trait, that function
// is only a placeholder that returns a pinned future containing the
// user logic, and it is that pinned future that needs to be instrumented.
// Were we to instrument its parent, we would only collect information
// regarding the allocation of that future, and not its own span of execution.
// Depending on the version of async-trait, we inspect the block of the function
// to find if it matches the pattern
// `async fn foo<...>(...) {...}; Box::pin(foo<...>(...))` (<=0.1.43), or if
// it matches `Box::pin(async move { ... }) (>=0.1.44). We the return the
// statement that must be instrumented, along with some other information.
// 'gen_body' will then be able to use that information to instrument the
// proper function/future.
// (this follows the approach suggested in
// https://github.com/dtolnay/async-trait/issues/45#issuecomment-571245673)
fn get_async_trait_info(block: &Block, block_is_async: bool) -> Option<AsyncTraitInfo<'_>> {
    // are we in an async context? If yes, this isn't a async_trait-like pattern
    if block_is_async {
        return None;
    }

    // list of async functions declared inside the block
    let inside_funs = block.stmts.iter().filter_map(|stmt| {
        if let Stmt::Item(Item::Fn(fun)) = &stmt {
            // If the function is async, this is a candidate
            if fun.sig.asyncness.is_some() {
                return Some((stmt, fun));
            }
        }
        None
    });

    // last expression of the block (it determines the return value
    // of the block, so that if we are working on a function whose
    // `trait` or `impl` declaration is annotated by async_trait,
    // this is quite likely the point where the future is pinned)
    let (last_expr_stmt, last_expr) = block.stmts.iter().rev().find_map(|stmt| {
        if let Stmt::Expr(expr) = stmt {
            Some((stmt, expr))
        } else {
            None
        }
    })?;

    // is the last expression a function call?
    let (outside_func, outside_args) = match last_expr {
        Expr::Call(ExprCall { func, args, .. }) => (func, args),
        _ => return None,
    };

    // is it a call to `Box::pin()`?
    let path = match outside_func.as_ref() {
        Expr::Path(path) => &path.path,
        _ => return None,
    };
    if !path_to_string(path).ends_with("Box::pin") {
        return None;
    }

    // Does the call take an argument? If it doesn't,
    // it's not gonna compile anyway, but that's no reason
    // to (try to) perform an out of bounds access
    if outside_args.is_empty() {
        return None;
    }

    // Is the argument to Box::pin an async block that
    // captures its arguments?
    if let Expr::Async(async_expr) = &outside_args[0] {
        // check that the move 'keyword' is present
        async_expr.capture?;

        return Some(AsyncTraitInfo {
            _source_stmt: last_expr_stmt,
            kind: AsyncTraitKind::Async(async_expr),
        });
    }

    // Is the argument to Box::pin a function call itself?
    let func = match &outside_args[0] {
        Expr::Call(ExprCall { func, .. }) => func,
        _ => return None,
    };

    // "stringify" the path of the function called
    let func_name = match **func {
        Expr::Path(ref func_path) => path_to_string(&func_path.path),
        _ => return None,
    };

    // Was that function defined inside of the current block?
    // If so, retrieve the statement where it was declared and the function itself
    let (stmt_func_declaration, _) = inside_funs
        .into_iter()
        .find(|(_, fun)| fun.sig.ident == func_name)?;

    Some(AsyncTraitInfo {
        _source_stmt: stmt_func_declaration,
        kind: AsyncTraitKind::Function,
    })
}

// Return a path as a String
fn path_to_string(path: &Path) -> String {
    use std::fmt::Write;
    // some heuristic to prevent too many allocations
    let mut res = String::with_capacity(path.segments.len() * 5);
    for i in 0..path.segments.len() {
        write!(res, "{}", path.segments[i].ident).expect("writing to a String should never fail");
        if i < path.segments.len() - 1 {
            res.push_str("::");
        }
    }
    res
}