mio_extras/
timer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
//! Timer optimized for I/O related operations
use crate::convert;
use lazycell::LazyCell;
use mio::{Evented, Poll, PollOpt, Ready, Registration, SetReadiness, Token};
use slab::Slab;
use std::sync::atomic::{AtomicUsize, Ordering};
use std::sync::Arc;
use std::time::{Duration, Instant};
use std::{cmp, fmt, io, iter, thread, u64, usize};

/// A timer.
///
/// Typical usage goes like this:
///
/// * register the timer with a `mio::Poll`.
/// * set a timeout, by calling `Timer::set_timeout`.  Here you provide some
///   state to be associated with this timeout.
/// * poll the `Poll`, to learn when a timeout has occurred.
/// * retrieve state associated with the timeout by calling `Timer::poll`.
///
/// You can omit use of the `Poll` altogether, if you like, and just poll the
/// `Timer` directly.
pub struct Timer<T> {
    // Size of each tick in milliseconds
    tick_ms: u64,
    // Slab of timeout entries
    entries: Slab<Entry<T>>,
    // Timeout wheel. Each tick, the timer will look at the next slot for
    // timeouts that match the current tick.
    wheel: Vec<WheelEntry>,
    // Tick 0's time instant
    start: Instant,
    // The current tick
    tick: Tick,
    // The next entry to possibly timeout
    next: Token,
    // Masks the target tick to get the slot
    mask: u64,
    // Set on registration with Poll
    inner: LazyCell<Inner>,
}

/// Used to create a `Timer`.
pub struct Builder {
    // Approximate duration of each tick
    tick: Duration,
    // Number of slots in the timer wheel
    num_slots: usize,
    // Max number of timeouts that can be in flight at a given time.
    capacity: usize,
}

/// A timeout, as returned by `Timer::set_timeout`.
///
/// Use this as the argument to `Timer::cancel_timeout`, to cancel this timeout.
#[derive(Clone, Debug)]
pub struct Timeout {
    // Reference into the timer entry slab
    token: Token,
    // Tick that it should match up with
    tick: u64,
}

struct Inner {
    registration: Registration,
    set_readiness: SetReadiness,
    wakeup_state: WakeupState,
    wakeup_thread: thread::JoinHandle<()>,
}

impl Drop for Inner {
    fn drop(&mut self) {
        // 1. Set wakeup state to TERMINATE_THREAD
        self.wakeup_state.store(TERMINATE_THREAD, Ordering::Release);
        // 2. Wake him up
        self.wakeup_thread.thread().unpark();
    }
}

#[derive(Copy, Clone, Debug)]
struct WheelEntry {
    next_tick: Tick,
    head: Token,
}

// Doubly linked list of timer entries. Allows for efficient insertion /
// removal of timeouts.
struct Entry<T> {
    state: T,
    links: EntryLinks,
}

#[derive(Copy, Clone)]
struct EntryLinks {
    tick: Tick,
    prev: Token,
    next: Token,
}

type Tick = u64;

const TICK_MAX: Tick = u64::MAX;

// Manages communication with wakeup thread
type WakeupState = Arc<AtomicUsize>;

const TERMINATE_THREAD: usize = 0;
const EMPTY: Token = Token(usize::MAX);

impl Builder {
    /// Set the tick duration.  Default is 100ms.
    pub fn tick_duration(mut self, duration: Duration) -> Builder {
        self.tick = duration;
        self
    }

    /// Set the number of slots.  Default is 256.
    pub fn num_slots(mut self, num_slots: usize) -> Builder {
        self.num_slots = num_slots;
        self
    }

    /// Set the capacity.  Default is 65536.
    pub fn capacity(mut self, capacity: usize) -> Builder {
        self.capacity = capacity;
        self
    }

    /// Build a `Timer` with the parameters set on this `Builder`.
    pub fn build<T>(self) -> Timer<T> {
        Timer::new(
            convert::millis(self.tick),
            self.num_slots,
            self.capacity,
            Instant::now(),
        )
    }
}

impl Default for Builder {
    fn default() -> Builder {
        Builder {
            tick: Duration::from_millis(100),
            num_slots: 1 << 8,
            capacity: 1 << 16,
        }
    }
}

impl<T> Timer<T> {
    fn new(tick_ms: u64, num_slots: usize, capacity: usize, start: Instant) -> Timer<T> {
        let num_slots = num_slots.next_power_of_two();
        let capacity = capacity.next_power_of_two();
        let mask = (num_slots as u64) - 1;
        let wheel = iter::repeat(WheelEntry {
            next_tick: TICK_MAX,
            head: EMPTY,
        })
        .take(num_slots)
        .collect();

        Timer {
            tick_ms,
            entries: Slab::with_capacity(capacity),
            wheel,
            start,
            tick: 0,
            next: EMPTY,
            mask,
            inner: LazyCell::new(),
        }
    }

    /// Set a timeout.
    ///
    /// When the timeout occurs, the given state becomes available via `poll`.
    pub fn set_timeout(&mut self, delay_from_now: Duration, state: T) -> Timeout {
        let delay_from_start = self.start.elapsed() + delay_from_now;
        self.set_timeout_at(delay_from_start, state)
    }

    fn set_timeout_at(&mut self, delay_from_start: Duration, state: T) -> Timeout {
        let mut tick = duration_to_tick(delay_from_start, self.tick_ms);
        trace!(
            "setting timeout; delay={:?}; tick={:?}; current-tick={:?}",
            delay_from_start,
            tick,
            self.tick
        );

        // Always target at least 1 tick in the future
        if tick <= self.tick {
            tick = self.tick + 1;
        }

        self.insert(tick, state)
    }

    fn insert(&mut self, tick: Tick, state: T) -> Timeout {
        // Get the slot for the requested tick
        let slot = (tick & self.mask) as usize;
        let curr = self.wheel[slot];

        // Insert the new entry
        let entry = Entry::new(state, tick, curr.head);
        let token = Token(self.entries.insert(entry));

        if curr.head != EMPTY {
            // If there was a previous entry, set its prev pointer to the new
            // entry
            self.entries[curr.head.into()].links.prev = token;
        }

        // Update the head slot
        self.wheel[slot] = WheelEntry {
            next_tick: cmp::min(tick, curr.next_tick),
            head: token,
        };

        self.schedule_readiness(tick);

        trace!("inserted timout; slot={}; token={:?}", slot, token);

        // Return the new timeout
        Timeout { token, tick }
    }

    /// Cancel a timeout.
    ///
    /// If the timeout has not yet occurred, the return value holds the
    /// associated state.
    pub fn cancel_timeout(&mut self, timeout: &Timeout) -> Option<T> {
        let links = match self.entries.get(timeout.token.into()) {
            Some(e) => e.links,
            None => return None,
        };

        // Sanity check
        if links.tick != timeout.tick {
            return None;
        }

        self.unlink(&links, timeout.token);
        Some(self.entries.remove(timeout.token.into()).state)
    }

    /// Poll for an expired timer.
    ///
    /// The return value holds the state associated with the first expired
    /// timer, if any.
    pub fn poll(&mut self) -> Option<T> {
        let target_tick = current_tick(self.start, self.tick_ms);
        self.poll_to(target_tick)
    }

    fn poll_to(&mut self, mut target_tick: Tick) -> Option<T> {
        trace!(
            "tick_to; target_tick={}; current_tick={}",
            target_tick,
            self.tick
        );

        if target_tick < self.tick {
            target_tick = self.tick;
        }

        while self.tick <= target_tick {
            let curr = self.next;

            trace!("ticking; curr={:?}", curr);

            if curr == EMPTY {
                self.tick += 1;

                let slot = self.slot_for(self.tick);
                self.next = self.wheel[slot].head;

                // Handle the case when a slot has a single timeout which gets
                // canceled before the timeout expires. In this case, the
                // slot's head is EMPTY but there is a value for next_tick. Not
                // resetting next_tick here causes the timer to get stuck in a
                // loop.
                if self.next == EMPTY {
                    self.wheel[slot].next_tick = TICK_MAX;
                }
            } else {
                let slot = self.slot_for(self.tick);

                if curr == self.wheel[slot].head {
                    self.wheel[slot].next_tick = TICK_MAX;
                }

                let links = self.entries[curr.into()].links;

                if links.tick <= self.tick {
                    trace!("triggering; token={:?}", curr);

                    // Unlink will also advance self.next
                    self.unlink(&links, curr);

                    // Remove and return the token
                    return Some(self.entries.remove(curr.into()).state);
                } else {
                    let next_tick = self.wheel[slot].next_tick;
                    self.wheel[slot].next_tick = cmp::min(next_tick, links.tick);
                    self.next = links.next;
                }
            }
        }

        // No more timeouts to poll
        if let Some(inner) = self.inner.borrow() {
            trace!("unsetting readiness");
            let _ = inner.set_readiness.set_readiness(Ready::empty());

            if let Some(tick) = self.next_tick() {
                self.schedule_readiness(tick);
            }
        }

        None
    }

    fn unlink(&mut self, links: &EntryLinks, token: Token) {
        trace!(
            "unlinking timeout; slot={}; token={:?}",
            self.slot_for(links.tick),
            token
        );

        if links.prev == EMPTY {
            let slot = self.slot_for(links.tick);
            self.wheel[slot].head = links.next;
        } else {
            self.entries[links.prev.into()].links.next = links.next;
        }

        if links.next != EMPTY {
            self.entries[links.next.into()].links.prev = links.prev;

            if token == self.next {
                self.next = links.next;
            }
        } else if token == self.next {
            self.next = EMPTY;
        }
    }

    fn schedule_readiness(&self, tick: Tick) {
        if let Some(inner) = self.inner.borrow() {
            // Coordinate setting readiness w/ the wakeup thread
            let mut curr = inner.wakeup_state.load(Ordering::Acquire);

            loop {
                if curr as Tick <= tick {
                    // Nothing to do, wakeup is already scheduled
                    return;
                }

                // Attempt to move the wakeup time forward
                trace!("advancing the wakeup time; target={}; curr={}", tick, curr);
                let actual =
                    inner
                        .wakeup_state
                        .compare_and_swap(curr, tick as usize, Ordering::Release);

                if actual == curr {
                    // Signal to the wakeup thread that the wakeup time has
                    // been changed.
                    trace!("unparking wakeup thread");
                    inner.wakeup_thread.thread().unpark();
                    return;
                }

                curr = actual;
            }
        }
    }

    // Next tick containing a timeout
    fn next_tick(&self) -> Option<Tick> {
        if self.next != EMPTY {
            let slot = self.slot_for(self.entries[self.next.into()].links.tick);

            if self.wheel[slot].next_tick == self.tick {
                // There is data ready right now
                return Some(self.tick);
            }
        }

        self.wheel.iter().map(|e| e.next_tick).min()
    }

    fn slot_for(&self, tick: Tick) -> usize {
        (self.mask & tick) as usize
    }
}

impl<T> Default for Timer<T> {
    fn default() -> Timer<T> {
        Builder::default().build()
    }
}

impl<T> Evented for Timer<T> {
    fn register(
        &self,
        poll: &Poll,
        token: Token,
        interest: Ready,
        opts: PollOpt,
    ) -> io::Result<()> {
        if self.inner.borrow().is_some() {
            return Err(io::Error::new(
                io::ErrorKind::Other,
                "timer already registered",
            ));
        }

        let (registration, set_readiness) = Registration::new2();
        poll.register(&registration, token, interest, opts)?;
        let wakeup_state = Arc::new(AtomicUsize::new(usize::MAX));
        let thread_handle = spawn_wakeup_thread(
            Arc::clone(&wakeup_state),
            set_readiness.clone(),
            self.start,
            self.tick_ms,
        );

        self.inner
            .fill(Inner {
                registration,
                set_readiness,
                wakeup_state,
                wakeup_thread: thread_handle,
            })
            .expect("timer already registered");

        if let Some(next_tick) = self.next_tick() {
            self.schedule_readiness(next_tick);
        }

        Ok(())
    }

    fn reregister(
        &self,
        poll: &Poll,
        token: Token,
        interest: Ready,
        opts: PollOpt,
    ) -> io::Result<()> {
        match self.inner.borrow() {
            Some(inner) => poll.reregister(&inner.registration, token, interest, opts),
            None => Err(io::Error::new(
                io::ErrorKind::Other,
                "receiver not registered",
            )),
        }
    }

    fn deregister(&self, poll: &Poll) -> io::Result<()> {
        match self.inner.borrow() {
            Some(inner) => poll.deregister(&inner.registration),
            None => Err(io::Error::new(
                io::ErrorKind::Other,
                "receiver not registered",
            )),
        }
    }
}

impl fmt::Debug for Inner {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        fmt.debug_struct("Inner")
            .field("registration", &self.registration)
            .field("wakeup_state", &self.wakeup_state.load(Ordering::Relaxed))
            .finish()
    }
}

fn spawn_wakeup_thread(
    state: WakeupState,
    set_readiness: SetReadiness,
    start: Instant,
    tick_ms: u64,
) -> thread::JoinHandle<()> {
    thread::spawn(move || {
        let mut sleep_until_tick = state.load(Ordering::Acquire) as Tick;

        loop {
            if sleep_until_tick == TERMINATE_THREAD as Tick {
                return;
            }

            let now_tick = current_tick(start, tick_ms);

            trace!(
                "wakeup thread: sleep_until_tick={:?}; now_tick={:?}",
                sleep_until_tick,
                now_tick
            );

            if now_tick < sleep_until_tick {
                // Calling park_timeout with u64::MAX leads to undefined
                // behavior in pthread, causing the park to return immediately
                // and causing the thread to tightly spin. Instead of u64::MAX
                // on large values, simply use a blocking park.
                match tick_ms.checked_mul(sleep_until_tick - now_tick) {
                    Some(sleep_duration) => {
                        trace!(
                            "sleeping; tick_ms={}; now_tick={}; sleep_until_tick={}; duration={:?}",
                            tick_ms,
                            now_tick,
                            sleep_until_tick,
                            sleep_duration
                        );
                        thread::park_timeout(Duration::from_millis(sleep_duration));
                    }
                    None => {
                        trace!(
                            "sleeping; tick_ms={}; now_tick={}; blocking sleep",
                            tick_ms,
                            now_tick
                        );
                        thread::park();
                    }
                }
                sleep_until_tick = state.load(Ordering::Acquire) as Tick;
            } else {
                let actual =
                    state.compare_and_swap(sleep_until_tick as usize, usize::MAX, Ordering::AcqRel)
                        as Tick;

                if actual == sleep_until_tick {
                    trace!("setting readiness from wakeup thread");
                    let _ = set_readiness.set_readiness(Ready::readable());
                    sleep_until_tick = usize::MAX as Tick;
                } else {
                    sleep_until_tick = actual as Tick;
                }
            }
        }
    })
}

fn duration_to_tick(elapsed: Duration, tick_ms: u64) -> Tick {
    // Calculate tick rounding up to the closest one
    let elapsed_ms = convert::millis(elapsed);
    elapsed_ms.saturating_add(tick_ms / 2) / tick_ms
}

fn current_tick(start: Instant, tick_ms: u64) -> Tick {
    duration_to_tick(start.elapsed(), tick_ms)
}

impl<T> Entry<T> {
    fn new(state: T, tick: u64, next: Token) -> Entry<T> {
        Entry {
            state,
            links: EntryLinks {
                tick,
                prev: EMPTY,
                next,
            },
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use std::time::{Duration, Instant};

    #[test]
    pub fn test_timeout_next_tick() {
        let mut t = timer();
        let mut tick;

        t.set_timeout_at(Duration::from_millis(100), "a");

        tick = ms_to_tick(&t, 50);
        assert_eq!(None, t.poll_to(tick));

        tick = ms_to_tick(&t, 100);
        assert_eq!(Some("a"), t.poll_to(tick));
        assert_eq!(None, t.poll_to(tick));

        tick = ms_to_tick(&t, 150);
        assert_eq!(None, t.poll_to(tick));

        tick = ms_to_tick(&t, 200);
        assert_eq!(None, t.poll_to(tick));

        assert_eq!(count(&t), 0);
    }

    #[test]
    pub fn test_clearing_timeout() {
        let mut t = timer();
        let mut tick;

        let to = t.set_timeout_at(Duration::from_millis(100), "a");
        assert_eq!("a", t.cancel_timeout(&to).unwrap());

        tick = ms_to_tick(&t, 100);
        assert_eq!(None, t.poll_to(tick));

        tick = ms_to_tick(&t, 200);
        assert_eq!(None, t.poll_to(tick));

        assert_eq!(count(&t), 0);
    }

    #[test]
    pub fn test_multiple_timeouts_same_tick() {
        let mut t = timer();
        let mut tick;

        t.set_timeout_at(Duration::from_millis(100), "a");
        t.set_timeout_at(Duration::from_millis(100), "b");

        let mut rcv = vec![];

        tick = ms_to_tick(&t, 100);
        rcv.push(t.poll_to(tick).unwrap());
        rcv.push(t.poll_to(tick).unwrap());

        assert_eq!(None, t.poll_to(tick));

        rcv.sort();
        assert!(rcv == ["a", "b"], "actual={:?}", rcv);

        tick = ms_to_tick(&t, 200);
        assert_eq!(None, t.poll_to(tick));

        assert_eq!(count(&t), 0);
    }

    #[test]
    pub fn test_multiple_timeouts_diff_tick() {
        let mut t = timer();
        let mut tick;

        t.set_timeout_at(Duration::from_millis(110), "a");
        t.set_timeout_at(Duration::from_millis(220), "b");
        t.set_timeout_at(Duration::from_millis(230), "c");
        t.set_timeout_at(Duration::from_millis(440), "d");
        t.set_timeout_at(Duration::from_millis(560), "e");

        tick = ms_to_tick(&t, 100);
        assert_eq!(Some("a"), t.poll_to(tick));
        assert_eq!(None, t.poll_to(tick));

        tick = ms_to_tick(&t, 200);
        assert_eq!(Some("c"), t.poll_to(tick));
        assert_eq!(Some("b"), t.poll_to(tick));
        assert_eq!(None, t.poll_to(tick));

        tick = ms_to_tick(&t, 300);
        assert_eq!(None, t.poll_to(tick));

        tick = ms_to_tick(&t, 400);
        assert_eq!(Some("d"), t.poll_to(tick));
        assert_eq!(None, t.poll_to(tick));

        tick = ms_to_tick(&t, 500);
        assert_eq!(None, t.poll_to(tick));

        tick = ms_to_tick(&t, 600);
        assert_eq!(Some("e"), t.poll_to(tick));
        assert_eq!(None, t.poll_to(tick));
    }

    #[test]
    pub fn test_catching_up() {
        let mut t = timer();

        t.set_timeout_at(Duration::from_millis(110), "a");
        t.set_timeout_at(Duration::from_millis(220), "b");
        t.set_timeout_at(Duration::from_millis(230), "c");
        t.set_timeout_at(Duration::from_millis(440), "d");

        let tick = ms_to_tick(&t, 600);
        assert_eq!(Some("a"), t.poll_to(tick));
        assert_eq!(Some("c"), t.poll_to(tick));
        assert_eq!(Some("b"), t.poll_to(tick));
        assert_eq!(Some("d"), t.poll_to(tick));
        assert_eq!(None, t.poll_to(tick));
    }

    #[test]
    pub fn test_timeout_hash_collision() {
        let mut t = timer();
        let mut tick;

        t.set_timeout_at(Duration::from_millis(100), "a");
        t.set_timeout_at(Duration::from_millis(100 + TICK * SLOTS as u64), "b");

        tick = ms_to_tick(&t, 100);
        assert_eq!(Some("a"), t.poll_to(tick));
        assert_eq!(1, count(&t));

        tick = ms_to_tick(&t, 200);
        assert_eq!(None, t.poll_to(tick));
        assert_eq!(1, count(&t));

        tick = ms_to_tick(&t, 100 + TICK * SLOTS as u64);
        assert_eq!(Some("b"), t.poll_to(tick));
        assert_eq!(0, count(&t));
    }

    #[test]
    pub fn test_clearing_timeout_between_triggers() {
        let mut t = timer();
        let mut tick;

        let a = t.set_timeout_at(Duration::from_millis(100), "a");
        let _ = t.set_timeout_at(Duration::from_millis(100), "b");
        let _ = t.set_timeout_at(Duration::from_millis(200), "c");

        tick = ms_to_tick(&t, 100);
        assert_eq!(Some("b"), t.poll_to(tick));
        assert_eq!(2, count(&t));

        t.cancel_timeout(&a);
        assert_eq!(1, count(&t));

        assert_eq!(None, t.poll_to(tick));

        tick = ms_to_tick(&t, 200);
        assert_eq!(Some("c"), t.poll_to(tick));
        assert_eq!(0, count(&t));
    }

    const TICK: u64 = 100;
    const SLOTS: usize = 16;
    const CAPACITY: usize = 32;

    fn count<T>(timer: &Timer<T>) -> usize {
        timer.entries.len()
    }

    fn timer() -> Timer<&'static str> {
        Timer::new(TICK, SLOTS, CAPACITY, Instant::now())
    }

    fn ms_to_tick<T>(timer: &Timer<T>, ms: u64) -> u64 {
        ms / timer.tick_ms
    }
}