mio_named_pipes/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
//! Windows named pipes bindings for mio.
//!
//! This crate implements bindings for named pipes for the mio crate. This
//! crate compiles on all platforms but only contains anything on Windows.
//! Currently this crate requires mio 0.6.2.
//!
//! On Windows, mio is implemented with an IOCP object at the heart of its
//! `Poll` implementation. For named pipes, this means that all I/O is done in
//! an overlapped fashion and the named pipes themselves are registered with
//! mio's internal IOCP object. Essentially, this crate is using IOCP for
//! bindings with named pipes.
//!
//! Note, though, that IOCP is a *completion* based model whereas mio expects a
//! *readiness* based model. As a result this crate, like with TCP objects in
//! mio, has internal buffering to translate the completion model to a readiness
//! model. This means that this crate is not a zero-cost binding over named
//! pipes on Windows, but rather approximates the performance of mio's TCP
//! implementation on Windows.
//!
//! # Trait implementations
//!
//! The `Read` and `Write` traits are implemented for `NamedPipe` and for
//! `&NamedPipe`. This represents that a named pipe can be concurrently read and
//! written to and also can be read and written to at all. Typically a named
//! pipe needs to be connected to a client before it can be read or written,
//! however.
//!
//! Note that for I/O operations on a named pipe to succeed then the named pipe
//! needs to be associated with an event loop. Until this happens all I/O
//! operations will return a "would block" error.
//!
//! # Managing connections
//!
//! The `NamedPipe` type supports a `connect` method to connect to a client and
//! a `disconnect` method to disconnect from that client. These two methods only
//! work once a named pipe is associated with an event loop.
//!
//! The `connect` method will succeed asynchronously and a completion can be
//! detected once the object receives a writable notification.
//!
//! # Named pipe clients
//!
//! Currently to create a client of a named pipe server then you can use the
//! `OpenOptions` type in the standard library to create a `File` that connects
//! to a named pipe. Afterwards you can use the `into_raw_handle` method coupled
//! with the `NamedPipe::from_raw_handle` method to convert that to a named pipe
//! that can operate asynchronously. Don't forget to pass the
//! `FILE_FLAG_OVERLAPPED` flag when opening the `File`.
#![cfg(windows)]
#![deny(missing_docs)]
#[macro_use]
extern crate log;
extern crate mio;
extern crate miow;
extern crate winapi;
use std::ffi::OsStr;
use std::fmt;
use std::io;
use std::io::prelude::*;
use std::mem;
use std::os::windows::io::*;
use std::slice;
use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering::SeqCst;
use std::sync::Mutex;
use mio::windows;
use mio::{Evented, Poll, PollOpt, Ready, Registration, SetReadiness, Token};
use miow::iocp::CompletionStatus;
use miow::pipe;
use winapi::shared::winerror::*;
use winapi::um::ioapiset::*;
use winapi::um::minwinbase::*;
mod from_raw_arc;
use crate::from_raw_arc::FromRawArc;
macro_rules! offset_of {
($t:ty, $($field:ident).+) => (
&(*(0 as *const $t)).$($field).+ as *const _ as usize
)
}
macro_rules! overlapped2arc {
($e:expr, $t:ty, $($field:ident).+) => ({
let offset = offset_of!($t, $($field).+);
debug_assert!(offset < mem::size_of::<$t>());
FromRawArc::from_raw(($e as usize - offset) as *mut $t)
})
}
fn would_block() -> io::Error {
io::ErrorKind::WouldBlock.into()
}
/// Representation of a named pipe on Windows.
///
/// This structure internally contains a `HANDLE` which represents the named
/// pipe, and also maintains state associated with the mio event loop and active
/// I/O operations that have been scheduled to translate IOCP to a readiness
/// model.
pub struct NamedPipe {
registered: AtomicBool,
ready_registration: Registration,
poll_registration: windows::Binding,
inner: FromRawArc<Inner>,
}
struct Inner {
handle: pipe::NamedPipe,
readiness: SetReadiness,
connect: windows::Overlapped,
connecting: AtomicBool,
read: windows::Overlapped,
write: windows::Overlapped,
io: Mutex<Io>,
pool: Mutex<BufferPool>,
}
struct Io {
read: State,
write: State,
connect_error: Option<io::Error>,
}
enum State {
None,
Pending(Vec<u8>, usize),
Ok(Vec<u8>, usize),
Err(io::Error),
}
fn _assert_kinds() {
fn _assert_send<T: Send>() {}
fn _assert_sync<T: Sync>() {}
_assert_send::<NamedPipe>();
_assert_sync::<NamedPipe>();
}
impl NamedPipe {
/// Creates a new named pipe at the specified `addr` given a "reasonable
/// set" of initial configuration options.
///
/// Currently the configuration options are the [same as miow]. To change
/// these options, you can create a custom named pipe yourself and then use
/// the `FromRawHandle` constructor to convert that type to an instance of a
/// `NamedPipe` in this crate.
///
/// [same as miow]: https://docs.rs/miow/0.1.4/x86_64-pc-windows-msvc/miow/pipe/struct.NamedPipe.html#method.new
pub fn new<A: AsRef<OsStr>>(addr: A) -> io::Result<NamedPipe> {
NamedPipe::_new(addr.as_ref())
}
fn _new(addr: &OsStr) -> io::Result<NamedPipe> {
let pipe = pipe::NamedPipe::new(addr)?;
unsafe { Ok(NamedPipe::from_raw_handle(pipe.into_raw_handle())) }
}
/// Attempts to call `ConnectNamedPipe`, if possible.
///
/// This function will attempt to connect this pipe to a client in an
/// asynchronous fashion. If the function immediately establishes a
/// connection to a client then `Ok(())` is returned. Otherwise if a
/// connection attempt was issued and is now in progress then a "would
/// block" error is returned.
///
/// When the connection is finished then this object will be flagged as
/// being ready for a write, or otherwise in the writable state.
///
/// # Errors
///
/// This function will return a "would block" error if the pipe has not yet
/// been registered with an event loop, if the connection operation has
/// previously been issued but has not yet completed, or if the connect
/// itself was issued and didn't finish immediately.
///
/// Normal I/O errors from the call to `ConnectNamedPipe` are returned
/// immediately.
pub fn connect(&self) -> io::Result<()> {
// Make sure we're associated with an IOCP object
if !self.registered() {
return Err(would_block());
}
// "Acquire the connecting lock" or otherwise just make sure we're the
// only operation that's using the `connect` overlapped instance.
if self.inner.connecting.swap(true, SeqCst) {
return Err(would_block());
}
// Now that we've flagged ourselves in the connecting state, issue the
// connection attempt. Afterwards interpret the return value and set
// internal state accordingly.
let res = unsafe {
let overlapped = self.inner.connect.as_mut_ptr() as *mut _;
self.inner.handle.connect_overlapped(overlapped)
};
match res {
// The connection operation finished immediately, so let's schedule
// reads/writes and such.
Ok(true) => {
trace!("connect done immediately");
self.inner.connecting.store(false, SeqCst);
Inner::post_register(&self.inner);
Ok(())
}
// If the overlapped operation was successful and didn't finish
// immediately then we forget a copy of the arc we hold
// internally. This ensures that when the completion status comes
// in for the I/O operation finishing it'll have a reference
// associated with it and our data will still be valid. The
// `connect_done` function will "reify" this forgotten pointer to
// drop the refcount on the other side.
Ok(false) => {
trace!("connect in progress");
mem::forget(self.inner.clone());
Err(would_block())
}
// TODO: are we sure no IOCP notification comes in here?
Err(e) => {
trace!("connect error: {}", e);
self.inner.connecting.store(false, SeqCst);
Err(e)
}
}
}
/// Takes any internal error that has happened after the last I/O operation
/// which hasn't been retrieved yet.
///
/// This is particularly useful when detecting failed attempts to `connect`.
/// After a completed `connect` flags this pipe as writable then callers
/// must invoke this method to determine whether the connection actually
/// succeeded. If this function returns `None` then a client is connected,
/// otherwise it returns an error of what happened and a client shouldn't be
/// connected.
pub fn take_error(&self) -> io::Result<Option<io::Error>> {
Ok(self.inner.io.lock().unwrap().connect_error.take())
}
/// Disconnects this named pipe from a connected client.
///
/// This function will disconnect the pipe from a connected client, if any,
/// transitively calling the `DisconnectNamedPipe` function. If the
/// disconnection is successful then this object will no longer be readable
/// or writable.
///
/// After a `disconnect` is issued, then a `connect` may be called again to
/// connect to another client.
pub fn disconnect(&self) -> io::Result<()> {
self.inner.handle.disconnect()?;
self.inner
.readiness
.set_readiness(Ready::empty())
.expect("event loop seems gone");
Ok(())
}
fn registered(&self) -> bool {
self.registered.load(SeqCst)
}
}
impl Read for NamedPipe {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
<&NamedPipe as Read>::read(&mut &*self, buf)
}
}
impl Write for NamedPipe {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
<&NamedPipe as Write>::write(&mut &*self, buf)
}
fn flush(&mut self) -> io::Result<()> {
<&NamedPipe as Write>::flush(&mut &*self)
}
}
impl<'a> Read for &'a NamedPipe {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
// Make sure we're registered
if !self.registered() {
return Err(would_block());
}
let mut state = self.inner.io.lock().unwrap();
match mem::replace(&mut state.read, State::None) {
// In theory not possible with `ready_registration` checked above,
// but return would block for now.
State::None => Err(would_block()),
// A read is in flight, still waiting for it to finish
State::Pending(buf, amt) => {
state.read = State::Pending(buf, amt);
Err(would_block())
}
// We previously read something into `data`, try to copy out some
// data. If we copy out all the data schedule a new read and
// otherwise store the buffer to get read later.
State::Ok(data, cur) => {
let n = {
let mut remaining = &data[cur..];
remaining.read(buf)?
};
let next = cur + n;
if next != data.len() {
state.read = State::Ok(data, next);
} else {
self.inner.put_buffer(data);
Inner::schedule_read(&self.inner, &mut state);
}
Ok(n)
}
// Looks like an in-flight read hit an error, return that here while
// we schedule a new one.
State::Err(e) => {
Inner::schedule_read(&self.inner, &mut state);
if e.raw_os_error() == Some(ERROR_BROKEN_PIPE as i32) {
Ok(0)
} else {
Err(e)
}
}
}
}
}
impl<'a> Write for &'a NamedPipe {
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
// Make sure we're registered
if !self.registered() {
return Err(would_block());
}
// Make sure there's no writes pending
let mut io = self.inner.io.lock().unwrap();
match io.write {
State::None => {}
_ => return Err(would_block()),
}
// Move `buf` onto the heap and fire off the write
let mut owned_buf = self.inner.get_buffer();
owned_buf.extend(buf);
Inner::schedule_write(&self.inner, owned_buf, 0, &mut io);
Ok(buf.len())
}
fn flush(&mut self) -> io::Result<()> {
// TODO: `FlushFileBuffers` somehow?
Ok(())
}
}
impl Evented for NamedPipe {
fn register(
&self,
poll: &Poll,
token: Token,
interest: Ready,
opts: PollOpt,
) -> io::Result<()> {
// First, register the handle with the event loop
unsafe {
self.poll_registration
.register_handle(&self.inner.handle, token, poll)?;
}
poll.register(&self.ready_registration, token, interest, opts)?;
self.registered.store(true, SeqCst);
Inner::post_register(&self.inner);
Ok(())
}
fn reregister(
&self,
poll: &Poll,
token: Token,
interest: Ready,
opts: PollOpt,
) -> io::Result<()> {
// Validate `Poll` and that we were previously registered
unsafe {
self.poll_registration
.reregister_handle(&self.inner.handle, token, poll)?;
}
// At this point we should for sure have `ready_registration` unless
// we're racing with `register` above, so just return a bland error if
// the borrow fails.
poll.reregister(&self.ready_registration, token, interest, opts)?;
Inner::post_register(&self.inner);
Ok(())
}
fn deregister(&self, poll: &Poll) -> io::Result<()> {
// Validate `Poll` and deregister ourselves
unsafe {
self.poll_registration
.deregister_handle(&self.inner.handle, poll)?;
}
poll.deregister(&self.ready_registration)
}
}
impl AsRawHandle for NamedPipe {
fn as_raw_handle(&self) -> RawHandle {
self.inner.handle.as_raw_handle()
}
}
impl FromRawHandle for NamedPipe {
unsafe fn from_raw_handle(handle: RawHandle) -> NamedPipe {
let (r, s) = Registration::new2();
NamedPipe {
registered: AtomicBool::new(false),
ready_registration: r,
poll_registration: windows::Binding::new(),
inner: FromRawArc::new(Inner {
handle: pipe::NamedPipe::from_raw_handle(handle),
readiness: s,
connecting: AtomicBool::new(false),
// transmutes to straddle winapi versions (mio 0.6 is on an
// older winapi)
connect: windows::Overlapped::new(mem::transmute(connect_done as fn(_))),
read: windows::Overlapped::new(mem::transmute(read_done as fn(_))),
write: windows::Overlapped::new(mem::transmute(write_done as fn(_))),
io: Mutex::new(Io {
read: State::None,
write: State::None,
connect_error: None,
}),
pool: Mutex::new(BufferPool::with_capacity(2)),
}),
}
}
}
impl fmt::Debug for NamedPipe {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.inner.handle.fmt(f)
}
}
impl Drop for NamedPipe {
fn drop(&mut self) {
// Cancel pending reads/connects, but don't cancel writes to ensure that
// everything is flushed out.
unsafe {
if self.inner.connecting.load(SeqCst) {
drop(cancel(&self.inner.handle, &self.inner.connect));
}
let io = self.inner.io.lock().unwrap();
match io.read {
State::Pending(..) => {
drop(cancel(&self.inner.handle, &self.inner.read));
}
_ => {}
}
}
}
}
impl Inner {
/// Schedules a read to happen in the background, executing an overlapped
/// operation.
///
/// This function returns `true` if a normal error happens or if the read
/// is scheduled in the background. If the pipe is no longer connected
/// (ERROR_PIPE_LISTENING) then `false` is returned and no read is
/// scheduled.
fn schedule_read(me: &FromRawArc<Inner>, io: &mut Io) -> bool {
// Check to see if a read is already scheduled/completed
match io.read {
State::None => {}
_ => return true,
}
// Turn off our read readiness
let ready = me.readiness.readiness();
me.readiness
.set_readiness(ready & !Ready::readable())
.expect("event loop seems gone");
// Allocate a buffer and schedule the read.
let mut buf = me.get_buffer();
let e = unsafe {
let overlapped = me.read.as_mut_ptr() as *mut _;
let slice = slice::from_raw_parts_mut(buf.as_mut_ptr(), buf.capacity());
me.handle.read_overlapped(slice, overlapped)
};
match e {
// See `connect` above for the rationale behind `forget`
Ok(e) => {
trace!("schedule read success: {:?}", e);
io.read = State::Pending(buf, 0); // 0 is ignored on read side
mem::forget(me.clone());
true
}
// If ERROR_PIPE_LISTENING happens then it's not a real read error,
// we just need to wait for a connect.
Err(ref e) if e.raw_os_error() == Some(ERROR_PIPE_LISTENING as i32) => false,
// If some other error happened, though, we're now readable to give
// out the error.
Err(e) => {
trace!("schedule read error: {}", e);
io.read = State::Err(e);
me.readiness
.set_readiness(ready | Ready::readable())
.expect("event loop still seems gone");
true
}
}
}
fn schedule_write(me: &FromRawArc<Inner>, buf: Vec<u8>, pos: usize, io: &mut Io) {
// Very similar to `schedule_read` above, just done for the write half.
let ready = me.readiness.readiness();
me.readiness
.set_readiness(ready & !Ready::writable())
.expect("event loop seems gone");
let e = unsafe {
let overlapped = me.write.as_mut_ptr() as *mut _;
me.handle.write_overlapped(&buf[pos..], overlapped)
};
match e {
// See `connect` above for the rationale behind `forget`
Ok(e) => {
trace!("schedule write success: {:?}", e);
io.write = State::Pending(buf, pos);
mem::forget(me.clone())
}
Err(e) => {
trace!("schedule write error: {}", e);
io.write = State::Err(e);
me.add_readiness(Ready::writable());
}
}
}
fn add_readiness(&self, ready: Ready) {
self.readiness
.set_readiness(ready | self.readiness.readiness())
.expect("event loop still seems gone");
}
fn post_register(me: &FromRawArc<Inner>) {
let mut io = me.io.lock().unwrap();
if Inner::schedule_read(&me, &mut io) {
if let State::None = io.write {
me.add_readiness(Ready::writable());
}
}
}
fn get_buffer(&self) -> Vec<u8> {
self.pool.lock().unwrap().get(8 * 1024)
}
fn put_buffer(&self, buf: Vec<u8>) {
self.pool.lock().unwrap().put(buf)
}
}
unsafe fn cancel<T: AsRawHandle>(handle: &T, overlapped: &windows::Overlapped) -> io::Result<()> {
let ret = CancelIoEx(handle.as_raw_handle(), overlapped.as_mut_ptr() as *mut _);
if ret == 0 {
Err(io::Error::last_os_error())
} else {
Ok(())
}
}
fn connect_done(status: &OVERLAPPED_ENTRY) {
let status = CompletionStatus::from_entry(status);
trace!("connect done");
// Acquire the `FromRawArc<Inner>`. Note that we should be guaranteed that
// the refcount is available to us due to the `mem::forget` in
// `connect` above.
let me = unsafe { overlapped2arc!(status.overlapped(), Inner, connect) };
// Flag ourselves as no longer using the `connect` overlapped instances.
let prev = me.connecting.swap(false, SeqCst);
assert!(prev, "wasn't previously connecting");
// Stash away our connect error if one happened
debug_assert_eq!(status.bytes_transferred(), 0);
unsafe {
match me.handle.result(status.overlapped()) {
Ok(n) => debug_assert_eq!(n, 0),
Err(e) => me.io.lock().unwrap().connect_error = Some(e),
}
}
// We essentially just finished a registration, so kick off a
// read and register write readiness.
Inner::post_register(&me);
}
fn read_done(status: &OVERLAPPED_ENTRY) {
let status = CompletionStatus::from_entry(status);
trace!("read finished, bytes={}", status.bytes_transferred());
// Acquire the `FromRawArc<Inner>`. Note that we should be guaranteed that
// the refcount is available to us due to the `mem::forget` in
// `schedule_read` above.
let me = unsafe { overlapped2arc!(status.overlapped(), Inner, read) };
// Move from the `Pending` to `Ok` state.
let mut io = me.io.lock().unwrap();
let mut buf = match mem::replace(&mut io.read, State::None) {
State::Pending(buf, _) => buf,
_ => unreachable!(),
};
unsafe {
match me.handle.result(status.overlapped()) {
Ok(n) => {
debug_assert_eq!(status.bytes_transferred() as usize, n);
buf.set_len(status.bytes_transferred() as usize);
io.read = State::Ok(buf, 0);
}
Err(e) => {
debug_assert_eq!(status.bytes_transferred(), 0);
io.read = State::Err(e);
}
}
}
// Flag our readiness that we've got data.
me.add_readiness(Ready::readable());
}
fn write_done(status: &OVERLAPPED_ENTRY) {
let status = CompletionStatus::from_entry(status);
trace!("write finished, bytes={}", status.bytes_transferred());
// Acquire the `FromRawArc<Inner>`. Note that we should be guaranteed that
// the refcount is available to us due to the `mem::forget` in
// `schedule_write` above.
let me = unsafe { overlapped2arc!(status.overlapped(), Inner, write) };
// Make the state change out of `Pending`. If we wrote the entire buffer
// then we're writable again and otherwise we schedule another write.
let mut io = me.io.lock().unwrap();
let (buf, pos) = match mem::replace(&mut io.write, State::None) {
State::Pending(buf, pos) => (buf, pos),
_ => unreachable!(),
};
unsafe {
match me.handle.result(status.overlapped()) {
Ok(n) => {
debug_assert_eq!(status.bytes_transferred() as usize, n);
let new_pos = pos + (status.bytes_transferred() as usize);
if new_pos == buf.len() {
me.put_buffer(buf);
me.add_readiness(Ready::writable());
} else {
Inner::schedule_write(&me, buf, new_pos, &mut io);
}
}
Err(e) => {
debug_assert_eq!(status.bytes_transferred(), 0);
io.write = State::Err(e);
me.add_readiness(Ready::writable());
}
}
}
}
// Based on https://github.com/tokio-rs/mio/blob/13d5fc9/src/sys/windows/buffer_pool.rs
struct BufferPool {
pool: Vec<Vec<u8>>,
}
impl BufferPool {
fn with_capacity(cap: usize) -> BufferPool {
BufferPool {
pool: Vec::with_capacity(cap),
}
}
fn get(&mut self, default_cap: usize) -> Vec<u8> {
self.pool
.pop()
.unwrap_or_else(|| Vec::with_capacity(default_cap))
}
fn put(&mut self, mut buf: Vec<u8>) {
if self.pool.len() < self.pool.capacity() {
unsafe {
buf.set_len(0);
}
self.pool.push(buf);
}
}
}