1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
use crate::areas::MemoryAreas;
use crate::error::Error;
use bitflags::bitflags;
use std::fs::File;
use std::ops::{Deref, DerefMut, Range};
#[cfg(unix)]
use crate::os_impl::unix as platform;
#[cfg(windows)]
use crate::os_impl::windows as platform;
bitflags! {
/// The available flags to configure the allocated mapping.
pub struct MmapFlags: u32 {
/// Maps the pages as shared such that any modifcations are visible between processes.
///
/// When mapping a file without specifying this flag, the pages may initially be mapped as
/// shared, but a private copy will be created when any process writes to the memory
/// mapping, such that any modification is not visible to other processes.
const SHARED = 1 << 0;
/// Ensure the allocated pages are populated, such that they do not cause page faults.
const POPULATE = 1 << 1;
/// Do not reserve swap space for this allocation.
///
/// This flag acts as a no-op on platforms that do not support this feature.
const NO_RESERVE = 1 << 2;
/// Use huge pages for this allocation.
const HUGE_PAGES = 1 << 3;
/// The region grows downward like a stack on certain Unix platforms (e.g. FreeBSD).
///
/// This flag acts as a no-op on platforms that do not support this feature.
const STACK = 1 << 4;
/// The pages will not be included in a core dump.
///
/// This flag acts as a no-op on platforms that do not support this feature.
const NO_CORE_DUMP = 1 << 5;
/// Lock the physical memory to prevent page faults from happening when accessing the
/// pages.
const LOCKED = 1 << 6;
/// Suggest to use transparent huge pages for this allocation by calling `madvise()`.
///
/// This flag acts as a no-op on platforms that do not support this feature.
const TRANSPARENT_HUGE_PAGES = 1 << 7;
/// Suggest that the mapped region will be accessed sequentially by calling `madvise()`.
///
/// This flag acts as a no-op on platforms that do not support this feature.
const SEQUENTIAL = 1 << 8;
/// Suggest that the mapped region will be accessed randomly by calling `madvise()`.
///
/// This flag acts as a no-op on platforms that do not support this feature.
const RANDOM_ACCESS = 1 << 9;
}
/// The available flags to configure the allocated mapping, but that are considered unsafe to
/// use.
pub struct UnsafeMmapFlags: u32 {
/// Maps the memory mapping at the address specified, replacing any pages that have been
/// mapped at that address range.
///
/// This is not supported on Microsoft Windows.
const MAP_FIXED = 1 << 0;
/// Allows mapping the page as RWX. While this may seem useful for self-modifying code and
/// JIT engines, it is instead recommended to convert between mutable and executable
/// mappings using [`Mmap::make_mut()`] and [`MmapMut::make_exec()`] instead.
///
/// As it may be tempting to use this flag, this flag has been (indirectly) marked as
/// **unsafe**. Make sure to read the text below to understand the complications of this
/// flag before using it.
///
/// RWX pages are an interesting targets to attackers, e.g. for buffer overflow attacks, as
/// RWX mappings can potentially simplify such attacks. Without RWX mappings, attackers
/// instead have to resort to return-oriented programming (ROP) gadgets. To prevent buffer
/// overflow attacks, contemporary CPUs allow pages to be marked as non-executable which is
/// then used by the operating system to ensure that pages are either marked as writeable
/// or as executable, but not both. This is also known as W^X.
///
/// While the x86 and x86-64 architectures guarantee cache coherency between the L1
/// instruction and the L1 data cache, other architectures such as Arm and AArch64 do not.
/// If the user modified the pages, then executing the code may result in undefined
/// behavior. To ensure correct behavior a user has to flush the instruction cache after
/// modifying and before executing the page.
const JIT = 1 << 1;
}
/// A set of (supported) page sizes.
pub struct PageSizes: usize {
/// 4 KiB pages.
const _4K = 1 << 12;
/// 8 KiB pages.
const _8K = 1 << 13;
/// 16 KiB pages.
const _16K = 1 << 14;
/// 32 KiB pages.
const _32K = 1 << 15;
/// 64 KiB pages.
const _64K = 1 << 16;
/// 128 KiB pages.
const _128K = 1 << 17;
/// 256 KiB pages.
const _256K = 1 << 18;
/// 512 KiB pages.
const _512K = 1 << 19;
/// 1 MiB pages.
const _1M = 1 << 20;
/// 2 MiB pages.
const _2M = 1 << 21;
/// 4 MiB pages.
const _4M = 1 << 22;
/// 8 MiB pages.
const _8M = 1 << 23;
/// 16 MiB pages.
const _16M = 1 << 24;
/// 32 MiB pages.
const _32M = 1 << 25;
/// 64 MiB pages.
const _64M = 1 << 26;
/// 128 MiB pages.
const _128M = 1 << 27;
/// 256 MiB pages.
const _256M = 1 << 28;
/// 512 MiB pages.
const _512M = 1 << 29;
/// 1 GiB pages.
const _1G = 1 << 30;
/// 2 GiB pages.
const _2G = 1 << 31;
#[cfg(target_pointer_width = "64")]
/// 4 GiB pages.
const _4G = 1 << 32;
#[cfg(target_pointer_width = "64")]
/// 8 GiB pages.
const _8G = 1 << 33;
#[cfg(target_pointer_width = "64")]
/// 16 GiB pages.
const _16G = 1 << 34;
}
}
/// The preferred size of the pages uses, where the size is in log2 notation.
///
/// Note that not all the offered page sizes may be available on the current platform.
#[derive(Clone, Copy, Debug, Eq, Ord, PartialEq, PartialOrd)]
pub struct PageSize(pub usize);
impl PageSize {
/// Map the mapping using 4 KiB pages.
pub const _4K: Self = Self(12);
/// Map the mapping using 64 KiB pages.
pub const _64K: Self = Self(16);
/// Map the mapping using 512 KiB pages.
pub const _512K: Self = Self(19);
/// Map the mapping using 1 MiB pages.
pub const _1M: Self = Self(20);
/// Map the mapping using 2 MiB pages.
pub const _2M: Self = Self(21);
/// Map the mapping using 4 MiB pages.
pub const _4M: Self = Self(22);
/// Map the mapping using 8 MiB pages.
pub const _8M: Self = Self(23);
/// Map the mapping using 16 MiB pages.
pub const _16M: Self = Self(24);
/// Map the mapping using 32 MiB pages.
pub const _32M: Self = Self(25);
/// Map the mapping using 256 MiB pages.
pub const _256M: Self = Self(28);
/// Map the mapping using 512 MiB pages.
pub const _512M: Self = Self(29);
/// Map the mapping using 1 GiB pages.
pub const _1G: Self = Self(30);
/// Map the mapping using 2 GiB pages.
pub const _2G: Self = Self(31);
/// Map the mapping using 16 GiB pages.
pub const _16G: Self = Self(34);
}
impl TryFrom<PageSizes> for PageSize {
type Error = Error;
fn try_from(page_sizes: PageSizes) -> Result<PageSize, Error> {
if page_sizes.bits().count_ones() != 1 {
return Err(Error::InvalidSize);
}
Ok(PageSize(page_sizes.bits()))
}
}
macro_rules! reserved_mmap_impl {
($t:ident) => {
impl $t {
/// Returns the start address of this mapping.
#[inline]
pub fn start(&self) -> usize {
self.inner.as_ptr() as usize
}
/// Returns the end address of this mapping.
#[inline]
pub fn end(&self) -> usize {
self.start() + self.size()
}
/// Yields a raw immutable pointer of this mapping.
#[inline]
pub fn as_ptr(&self) -> *const u8 {
self.inner.as_ptr()
}
/// Yields a raw mutable pointer of this mapping.
#[inline]
pub fn as_mut_ptr(&mut self) -> *mut u8 {
self.inner.as_mut_ptr()
}
/// Yields the size of this mapping.
#[inline]
pub fn size(&self) -> usize {
self.inner.size()
}
/// Merges the memory maps into one. The memory maps must be adjacent to each other and
/// share the same attributes and backing. On success, this consumes the other memory map
/// object. Otherwise, this returns an error together with the original memory map that
/// failed to be merged.
pub fn merge(&mut self, other: Self) -> Result<(), (Error, Self)> {
// Ensure the memory maps are adjacent.
if self.end() != other.start() {
return Err((Error::MustBeAdjacent, other));
}
// Ensure the protection attributes match.
let region = match MemoryAreas::query(self.start()) {
Ok(Some(region)) => region,
Ok(None) => return Err((Error::AttributeMismatch, other)),
Err(e) => return Err((e, other)),
};
let other_region = match MemoryAreas::query(other.start()) {
Ok(Some(region)) => region,
Ok(None) => return Err((Error::AttributeMismatch, other)),
Err(e) => return Err((e, other)),
};
if region.protection != other_region.protection {
return Err((Error::AttributeMismatch, other));
}
if let Err(e) = self.inner.merge(&other.inner) {
return Err((e, other));
}
std::mem::forget(other);
Ok(())
}
/// Splits the memory map into two at the given byte offset. The byte offset must be
/// page size aligned.
///
/// Afterwards `self` is limited to the range `[0, at)`, and the returning memory
/// mapping is limited to `[at, len)`.
pub fn split_off(&mut self, at: usize) -> Result<Self, Error> {
let inner = self.inner.split_off(at)?;
Ok(Self { inner })
}
/// Splits the memory map into two at the given byte offset. The byte offset must be
/// page size aligned.
///
/// Afterwards `self` is limited to the range `[at, len)`, and the returning memory
/// mapping is limited to `[0, at)`.
pub fn split_to(&mut self, at: usize) -> Result<Self, Error> {
let inner = self.inner.split_to(at)?;
Ok(Self { inner })
}
}
};
}
macro_rules! mmap_impl {
($t:ident) => {
impl $t {
/// Locks the physical pages in memory such that accessing the mapping causes no page faults.
pub fn lock(&mut self) -> Result<(), Error> {
self.inner.lock()
}
/// Unlocks the physical pages in memory, allowing the operating system to swap out the pages
/// backing this memory mapping.
pub fn unlock(&mut self) -> Result<(), Error> {
self.inner.unlock()
}
/// Flushes a range of the memory mapping, i.e. this initiates writing dirty pages
/// within that range to the disk. Dirty pages are those whose contents have changed
/// since the file was mapped.
///
/// On Microsoft Windows, this function does not flush the file metadata. Thus, it must
/// be followed with a call to [`File::sync_all`] to flush the file metadata. This also
/// causes the flush operaton to be synchronous.
///
/// On other platforms, the flush operation is synchronous, i.e. this waits until the
/// flush operation completes.
pub fn flush(&self, range: Range<usize>) -> Result<(), Error> {
self.inner.flush(range)
}
/// Flushes a range of the memory mapping asynchronously, i.e. this initiates writing
/// dirty pages within that range to the disk without waiting for the flush operation
/// to complete. Dirty pages are those whose contents have changed since the file was
/// mapped.
pub fn flush_async(&self, range: Range<usize>) -> Result<(), Error> {
self.inner.flush_async(range)
}
/// This function can be used to flush the instruction cache on architectures where
/// this is required.
///
/// While the x86 and x86-64 architectures guarantee cache coherency between the L1 instruction
/// and the L1 data cache, other architectures such as Arm and AArch64 do not. If the user
/// modified the pages, then executing the code may result in undefined behavior. To ensure
/// correct behavior a user has to flush the instruction cache after modifying and before
/// executing the page.
pub fn flush_icache(&self) -> Result<(), Error> {
self.inner.flush_icache()
}
/// Remaps this memory mapping as inaccessible.
///
/// In case of failure, this returns the ownership of `self`.
pub fn make_none(mut self) -> Result<MmapNone, (Self, Error)> {
if let Err(e) = self.inner.make_none() {
return Err((self, e));
}
Ok(MmapNone { inner: self.inner })
}
/// Remaps this memory mapping as immutable.
///
/// In case of failure, this returns the ownership of `self`. If you are
/// not interested in this feature, you can use the implementation of
/// the [`TryFrom`] trait instead.
pub fn make_read_only(mut self) -> Result<Mmap, (Self, Error)> {
if let Err(e) = self.inner.make_read_only() {
return Err((self, e));
}
Ok(Mmap { inner: self.inner })
}
/// Remaps this memory mapping as executable.
///
/// In case of failure, this returns the ownership of `self`.
pub fn make_exec(mut self) -> Result<Mmap, (Self, Error)> {
if let Err(e) = self.inner.make_exec() {
return Err((self, e));
}
if let Err(e) = self.inner.flush_icache() {
return Err((self, e));
}
Ok(Mmap { inner: self.inner })
}
/// Remaps this memory mapping as executable, but does not flush the instruction cache.
///
/// # Safety
///
/// While the x86 and x86-64 architectures guarantee cache coherency between the L1 instruction
/// and the L1 data cache, other architectures such as Arm and AArch64 do not. If the user
/// modified the pages, then executing the code may result in undefined behavior. To ensure
/// correct behavior a user has to flush the instruction cache after modifying and before
/// executing the page.
///
/// In case of failure, this returns the ownership of `self`.
pub unsafe fn make_exec_no_flush(mut self) -> Result<Mmap, (Self, Error)> {
if let Err(e) = self.inner.make_exec() {
return Err((self, e));
}
Ok(Mmap { inner: self.inner })
}
/// Remaps this mapping to be mutable.
///
/// In case of failure, this returns the ownership of `self`. If you are
/// not interested in this feature, you can use the implementation of
/// the [`TryFrom`] trait instead.
pub fn make_mut(mut self) -> Result<MmapMut, (Self, Error)> {
if let Err(e) = self.inner.make_mut() {
return Err((self, e));
}
Ok(MmapMut { inner: self.inner })
}
/// Remaps this mapping to be executable and mutable.
///
/// While this may seem useful for self-modifying
/// code and JIT engines, it is instead recommended to convert between mutable and executable
/// mappings using [`Mmap::make_mut()`] and [`MmapMut::make_exec()`] instead.
///
/// Make sure to read the text below to understand the complications of this function before
/// using it. The [`UnsafeMmapFlags::JIT`] flag must be set for this function to succeed.
///
/// # Safety
///
/// RWX pages are an interesting targets to attackers, e.g. for buffer overflow attacks, as RWX
/// mappings can potentially simplify such attacks. Without RWX mappings, attackers instead
/// have to resort to return-oriented programming (ROP) gadgets. To prevent buffer overflow
/// attacks, contemporary CPUs allow pages to be marked as non-executable which is then used by
/// the operating system to ensure that pages are either marked as writeable or as executable,
/// but not both. This is also known as W^X.
///
/// While the x86 and x86-64 architectures guarantee cache coherency between the L1 instruction
/// and the L1 data cache, other architectures such as Arm and AArch64 do not. If the user
/// modified the pages, then executing the code may result in undefined behavior. To ensure
/// correct behavior a user has to flush the instruction cache after modifying and before
/// executing the page.
///
/// In case of failure, this returns the ownership of `self`.
pub unsafe fn make_exec_mut(mut self) -> Result<MmapMut, (Self, Error)> {
if let Err(e) = self.inner.make_exec_mut() {
return Err((self, e));
}
Ok(MmapMut { inner: self.inner })
}
}
};
}
/// Represents an inaccessible memory mapping.
#[derive(Debug)]
pub struct MmapNone {
inner: platform::Mmap,
}
mmap_impl!(MmapNone);
reserved_mmap_impl!(MmapNone);
/// Represents an immutable memory mapping.
#[derive(Debug)]
pub struct Mmap {
inner: platform::Mmap,
}
mmap_impl!(Mmap);
reserved_mmap_impl!(Mmap);
impl Mmap {
/// Extracts a slice containing the entire mapping.
///
/// This is equivalent to `&mapping[..]`.
#[inline]
pub fn as_slice(&self) -> &[u8] {
&self[..]
}
}
impl Deref for Mmap {
type Target = [u8];
fn deref(&self) -> &Self::Target {
unsafe { std::slice::from_raw_parts(self.as_ptr(), self.size()) }
}
}
impl AsRef<[u8]> for Mmap {
fn as_ref(&self) -> &[u8] {
unsafe { std::slice::from_raw_parts(self.as_ptr(), self.size()) }
}
}
impl TryFrom<MmapMut> for Mmap {
type Error = Error;
fn try_from(mmap_mut: MmapMut) -> Result<Self, Self::Error> {
match mmap_mut.make_read_only() {
Ok(mmap) => Ok(mmap),
Err((_, e)) => Err(e),
}
}
}
impl TryFrom<MmapNone> for Mmap {
type Error = Error;
fn try_from(mmap_none: MmapNone) -> Result<Self, Self::Error> {
match mmap_none.make_read_only() {
Ok(mmap) => Ok(mmap),
Err((_, e)) => Err(e),
}
}
}
/// Represents a mutable memory mapping.
#[derive(Debug)]
pub struct MmapMut {
inner: platform::Mmap,
}
mmap_impl!(MmapMut);
reserved_mmap_impl!(MmapMut);
impl MmapMut {
/// Extracts a slice containing the entire mapping.
///
/// This is equivalent to `&mapping[..]`.
#[inline]
pub fn as_slice(&self) -> &[u8] {
&self[..]
}
/// Extracts a mutable slice containing the entire mapping.
///
/// This is equivalent to `&mut mapping[..]`.
#[inline]
pub fn as_mut_slice(&mut self) -> &mut [u8] {
&mut self[..]
}
}
impl TryFrom<Mmap> for MmapMut {
type Error = Error;
fn try_from(mmap: Mmap) -> Result<Self, Self::Error> {
match mmap.make_mut() {
Ok(mmap_mut) => Ok(mmap_mut),
Err((_, e)) => Err(e),
}
}
}
impl TryFrom<MmapNone> for MmapMut {
type Error = Error;
fn try_from(mmap_none: MmapNone) -> Result<Self, Self::Error> {
match mmap_none.make_mut() {
Ok(mmap_mut) => Ok(mmap_mut),
Err((_, e)) => Err(e),
}
}
}
impl Deref for MmapMut {
type Target = [u8];
fn deref(&self) -> &Self::Target {
unsafe { std::slice::from_raw_parts(self.as_ptr(), self.size()) }
}
}
impl DerefMut for MmapMut {
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe { std::slice::from_raw_parts_mut(self.as_mut_ptr(), self.size()) }
}
}
impl AsRef<[u8]> for MmapMut {
fn as_ref(&self) -> &[u8] {
unsafe { std::slice::from_raw_parts(self.as_ptr(), self.size()) }
}
}
impl AsMut<[u8]> for MmapMut {
fn as_mut(&mut self) -> &mut [u8] {
unsafe { std::slice::from_raw_parts_mut(self.as_mut_ptr(), self.size()) }
}
}
/// Represents the options for the memory mapping.
#[derive(Debug)]
pub struct MmapOptions<'a> {
inner: platform::MmapOptions<'a>,
}
impl<'a> MmapOptions<'a> {
/// Constructs the `MmapOptions` builder. The size specified is the size of the mapping to be
/// allocated in bytes.
pub fn new(size: usize) -> Result<Self, Error> {
Ok(Self {
inner: platform::MmapOptions::new(size)?,
})
}
/// Returns the smallest possible page size for the current platform. The allocation size must
/// be aligned to the page size for the allocation to succeed.
pub fn page_size() -> usize {
platform::MmapOptions::page_size()
}
/// Returns the set of supported page sizes for the current platform.
pub fn page_sizes() -> Result<PageSizes, Error> {
platform::MmapOptions::page_sizes()
}
/// Returns the allocation granularity for the current platform. On some platforms the
/// allocation granularity may be a multiple of the page size. The start address of the
/// allocation must be aligned to `max(allocation_granularity, page_size)`.
pub fn allocation_granularity() -> usize {
platform::MmapOptions::allocation_granularity()
}
/// The desired address at which the memory should be mapped.
pub fn with_address(self, address: usize) -> Self {
Self {
inner: self.inner.with_address(address),
}
}
/// Whether the memory mapping should be backed by a [`File`] or not. If the memory mapping
/// should be mapped by a [`File`], then the user can also specify the offset within the file
/// at which the mapping should start.
///
/// On Microsoft Windows, it may not be possible to extend the protection beyond the access
/// mask that has been used to open the file. For instance, if a file has been opened with read
/// access, then [`Mmap::make_mut()`] will not work. Furthermore, [`std::fs::OpenOptions`] does
/// not in itself provide a standardized way to open the file with executable access. However,
/// if the file is not opened with executable access, then it may not be possible to use
/// [`Mmap::make_exec()`]. Fortunately, Rust provides [`OpenOptionsExt`] that allows you to
/// open the file with executable access rights. See [`access_mode`] for more information.
///
/// # Safety
///
/// This function is marked as **unsafe** as the user should be aware that even in the case
/// that a file is mapped as immutable in the address space of the current process, it does not
/// guarantee that there does not exist any other mutable mapping to the file.
///
/// On Microsoft Windows, it is possible to limit the access to shared reading or to be fully
/// exclusive using [`share_mode`].
///
/// On most Unix systems, it is possible to use [`nix::fcntl::flock`]. However, keep in mind
/// that this provides an **advisory** locking scheme, and that implementations are therefore
/// required to be co-operative.
///
/// On Linux, it is also possible to mark the file as immutable. See `man 2 ioctl_iflags` and
/// `man 1 chattr` for more information.
///
/// [`OpenOptionsExt`]: https://doc.rust-lang.org/std/os/windows/fs/trait.OpenOptionsExt.html
/// [`access_mode`]: https://doc.rust-lang.org/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.access_mode
/// [`share_mode`]: https://doc.rust-lang.org/std/os/windows/fs/trait.OpenOptionsExt.html#tymethod.share_mode
/// [`nix::fcntl::flock`]: https://docs.rs/nix/latest/nix/fcntl/fn.flock.html
pub unsafe fn with_file(self, file: &'a File, offset: u64) -> Self {
Self {
inner: self.inner.with_file(file, offset),
}
}
/// The desired configuration of the mapping. See [`MmapFlags`] for available options.
pub fn with_flags(self, flags: MmapFlags) -> Self {
Self {
inner: self.inner.with_flags(flags),
}
}
/// The desired configuration of the mapping. See [`UnsafeMmapFlags`] for available options.
///
/// # Safety
///
/// The flags that can be passed to this function have unsafe behavior associated with them.
pub unsafe fn with_unsafe_flags(self, flags: UnsafeMmapFlags) -> Self {
Self {
inner: self.inner.with_unsafe_flags(flags),
}
}
/// Whether this memory mapped should be backed by a specific page size or not.
pub fn with_page_size(self, page_size: PageSize) -> Self {
Self {
inner: self.inner.with_page_size(page_size),
}
}
/// Reserves inaccessible memory.
pub fn reserve_none(self) -> Result<ReservedNone, Error> {
Ok(ReservedNone {
inner: self.inner.reserve_none()?,
})
}
/// Reserves immutable memory.
pub fn reserve(self) -> Result<Reserved, Error> {
Ok(Reserved {
inner: self.inner.reserve()?,
})
}
/// Reserves executable memory.
pub fn reserve_exec(self) -> Result<Reserved, Error> {
Ok(Reserved {
inner: self.inner.reserve_exec()?,
})
}
/// Reserves mutable memory.
pub fn reserve_mut(self) -> Result<ReservedMut, Error> {
Ok(ReservedMut {
inner: self.inner.reserve_mut()?,
})
}
/// Reserves executable and mutable memory.
///
/// # Safety
///
/// See [`MmapOptions::map_exec_mut`] for more information.
pub unsafe fn reserve_exec_mut(self) -> Result<ReservedMut, Error> {
Ok(ReservedMut {
inner: self.inner.reserve_exec_mut()?,
})
}
/// Maps the memory as inaccessible.
pub fn map_none(self) -> Result<MmapNone, Error> {
Ok(MmapNone {
inner: self.inner.map_none()?,
})
}
/// Maps the memory as immutable.
pub fn map(self) -> Result<Mmap, Error> {
Ok(Mmap {
inner: self.inner.map()?,
})
}
/// Maps the memory as executable.
pub fn map_exec(self) -> Result<Mmap, Error> {
Ok(Mmap {
inner: self.inner.map_exec()?,
})
}
/// Maps the memory as mutable.
pub fn map_mut(self) -> Result<MmapMut, Error> {
Ok(MmapMut {
inner: self.inner.map_mut()?,
})
}
/// Maps the memory as executable and mutable. While this may seem useful for self-modifying
/// code and JIT engines, it is instead recommended to convert between mutable and executable
/// mappings using [`Mmap::make_mut()`] and [`MmapMut::make_exec()`] instead.
///
/// Make sure to read the text below to understand the complications of this function before
/// using it. The [`UnsafeMmapFlags::JIT`] flag must be set for this function to succeed.
///
/// # Safety
///
/// RWX pages are an interesting targets to attackers, e.g. for buffer overflow attacks, as RWX
/// mappings can potentially simplify such attacks. Without RWX mappings, attackers instead
/// have to resort to return-oriented programming (ROP) gadgets. To prevent buffer overflow
/// attacks, contemporary CPUs allow pages to be marked as non-executable which is then used by
/// the operating system to ensure that pages are either marked as writeable or as executable,
/// but not both. This is also known as W^X.
///
/// While the x86 and x86-64 architectures guarantee cache coherency between the L1 instruction
/// and the L1 data cache, other architectures such as Arm and AArch64 do not. If the user
/// modified the pages, then executing the code may result in undefined behavior. To ensure
/// correct behavior a user has to flush the instruction cache after modifying and before
/// executing the page.
pub unsafe fn map_exec_mut(self) -> Result<MmapMut, Error> {
Ok(MmapMut {
inner: self.inner.map_exec_mut()?,
})
}
}
macro_rules! reserved_impl {
($t:ident) => {
impl $t {
/// Returns `true` if the memory mapping is size 0.
#[inline]
pub fn is_empty(&self) -> bool {
self.inner.size() == 0
}
/// Yields the length of this mapping.
#[inline]
pub fn len(&self) -> usize {
self.inner.size()
}
/// Remaps this memory mapping as inaccessible.
///
/// In case of failure, this returns the ownership of `self`. If you are
/// not interested in this feature, you can use the implementation of
/// the [`TryFrom`] trait instead.
pub fn make_none(mut self) -> Result<ReservedNone, (Self, Error)> {
if let Err(e) = self.inner.make_none() {
return Err((self, e));
}
Ok(ReservedNone { inner: self.inner })
}
/// Remaps this memory mapping as immutable.
///
/// In case of failure, this returns the ownership of `self`. If you are
/// not interested in this feature, you can use the implementation of
/// the [`TryFrom`] trait instead.
pub fn make_read_only(mut self) -> Result<Reserved, (Self, Error)> {
if let Err(e) = self.inner.make_read_only() {
return Err((self, e));
}
Ok(Reserved { inner: self.inner })
}
/// Remaps this memory mapping as executable.
///
/// In case of failure, this returns the ownership of `self`.
pub fn make_exec(mut self) -> Result<Reserved, (Self, Error)> {
if let Err(e) = self.inner.make_exec() {
return Err((self, e));
}
if let Err(e) = self.inner.flush_icache() {
return Err((self, e));
}
Ok(Reserved { inner: self.inner })
}
/// Remaps this memory mapping as executable, but does not flush the instruction cache.
///
/// # Safety
///
/// While the x86 and x86-64 architectures guarantee cache coherency between the L1 instruction
/// and the L1 data cache, other architectures such as Arm and AArch64 do not. If the user
/// modified the pages, then executing the code may result in undefined behavior. To ensure
/// correct behavior a user has to flush the instruction cache after modifying and before
/// executing the page.
///
/// In case of failure, this returns the ownership of `self`.
pub unsafe fn make_exec_no_flush(mut self) -> Result<Reserved, (Self, Error)> {
if let Err(e) = self.inner.make_exec() {
return Err((self, e));
}
Ok(Reserved { inner: self.inner })
}
/// Remaps this mapping to be mutable.
///
/// In case of failure, this returns the ownership of `self`. If you are
/// not interested in this feature, you can use the implementation of
/// the [`TryFrom`] trait instead.
pub fn make_mut(mut self) -> Result<ReservedMut, (Self, Error)> {
if let Err(e) = self.inner.make_mut() {
return Err((self, e));
}
Ok(ReservedMut { inner: self.inner })
}
/// Remaps this mapping to be executable and mutable.
///
/// While this may seem useful for self-modifying
/// code and JIT engines, it is instead recommended to convert between mutable and executable
/// mappings using [`Mmap::make_mut()`] and [`MmapMut::make_exec()`] instead.
///
/// Make sure to read the text below to understand the complications of this function before
/// using it. The [`UnsafeMmapFlags::JIT`] flag must be set for this function to succeed.
///
/// # Safety
///
/// RWX pages are an interesting targets to attackers, e.g. for buffer overflow attacks, as RWX
/// mappings can potentially simplify such attacks. Without RWX mappings, attackers instead
/// have to resort to return-oriented programming (ROP) gadgets. To prevent buffer overflow
/// attacks, contemporary CPUs allow pages to be marked as non-executable which is then used by
/// the operating system to ensure that pages are either marked as writeable or as executable,
/// but not both. This is also known as W^X.
///
/// While the x86 and x86-64 architectures guarantee cache coherency between the L1 instruction
/// and the L1 data cache, other architectures such as Arm and AArch64 do not. If the user
/// modified the pages, then executing the code may result in undefined behavior. To ensure
/// correct behavior a user has to flush the instruction cache after modifying and before
/// executing the page.
///
/// In case of failure, this returns the ownership of `self`.
pub unsafe fn make_exec_mut(mut self) -> Result<ReservedMut, (Self, Error)> {
if let Err(e) = self.inner.make_exec_mut() {
return Err((self, e));
}
Ok(ReservedMut { inner: self.inner })
}
}
};
}
/// Represents an inaccessible memory mapping in a reserved state, i.e. a memory mapping that is not
/// backed by any physical pages yet.
#[derive(Debug)]
pub struct ReservedNone {
inner: platform::Mmap,
}
reserved_impl!(ReservedNone);
reserved_mmap_impl!(ReservedNone);
impl TryFrom<ReservedNone> for MmapNone {
type Error = Error;
fn try_from(mut reserved_none: ReservedNone) -> Result<MmapNone, Error> {
reserved_none.inner.commit()?;
Ok(MmapNone {
inner: reserved_none.inner,
})
}
}
impl TryFrom<ReservedMut> for Reserved {
type Error = Error;
fn try_from(mmap_mut: ReservedMut) -> Result<Self, Self::Error> {
match mmap_mut.make_read_only() {
Ok(mmap) => Ok(mmap),
Err((_, e)) => Err(e),
}
}
}
impl TryFrom<ReservedNone> for Reserved {
type Error = Error;
fn try_from(mmap_none: ReservedNone) -> Result<Self, Self::Error> {
match mmap_none.make_read_only() {
Ok(mmap) => Ok(mmap),
Err((_, e)) => Err(e),
}
}
}
/// Represents an immutable memory mapping in a reserved state, i.e. a memory mapping that is not
/// backed by any physical pages yet.
#[derive(Debug)]
pub struct Reserved {
inner: platform::Mmap,
}
reserved_impl!(Reserved);
reserved_mmap_impl!(Reserved);
impl TryFrom<Reserved> for Mmap {
type Error = Error;
fn try_from(mut reserved: Reserved) -> Result<Mmap, Error> {
reserved.inner.commit()?;
Ok(Mmap {
inner: reserved.inner,
})
}
}
/// Represents a mutable memory mapping in a reserved state, i.e. a memory mapping that is not
/// backed by any physical pages yet.
#[derive(Debug)]
pub struct ReservedMut {
inner: platform::Mmap,
}
reserved_impl!(ReservedMut);
reserved_mmap_impl!(ReservedMut);
impl TryFrom<ReservedMut> for MmapMut {
type Error = Error;
fn try_from(mut reserved_mut: ReservedMut) -> Result<MmapMut, Error> {
reserved_mut.inner.commit()?;
Ok(MmapMut {
inner: reserved_mut.inner,
})
}
}
impl TryFrom<Reserved> for ReservedMut {
type Error = Error;
fn try_from(mmap: Reserved) -> Result<Self, Self::Error> {
match mmap.make_mut() {
Ok(mmap_mut) => Ok(mmap_mut),
Err((_, e)) => Err(e),
}
}
}
impl TryFrom<ReservedNone> for ReservedMut {
type Error = Error;
fn try_from(mmap_none: ReservedNone) -> Result<Self, Self::Error> {
match mmap_none.make_mut() {
Ok(mmap_mut) => Ok(mmap_mut),
Err((_, e)) => Err(e),
}
}
}